Identification of nonlinear dynamical system with synthetic data: a preliminary investigation

M. Mazzoleni, M. Scandella, S. Formentin, F. Previdi

This paper introduces a new rationale for learning nonlinear dynamical systems. The method makes use of an additional identification dataset, obtained without performing a new experiment on the system under study. The data are generated in an automatical manner, starting from a set of experimentally acquired measurements. In order to leverage the additional generated information, fundamental techniques from the machine learning field known as Semi-Supervised Learning (SSL) are employed and adapted. The problem is then cast as a regularized parametric learning problem. The effectiveness of the proposed approach is assessed on various nonlinear benchmark systems via repeated simulations, comparing the obtained results with a standard regularization method for learning parametric models.