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Abstract:

This paper introduces a new rationale for learning nonlinear dynamical systems. The method
makes use of an additional identification dataset, obtained without performing a new experiment
on the system under study. The data are generated in an automatical manner, starting from
a set of experimentally acquired measurements. In order to leverage the additional generated
information, fundamental techniques from the machine learning field known as Semi-Supervised
Learning (SSL) are employed and adapted. The problem is then cast as a regularized parametric
learning problem. The effectiveness of the proposed approach is assessed on various nonlinear
benchmark systems via repeated simulations, comparing the obtained results with a standard
regularization method for learning parametric models.
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1. INTRODUCTION

System identification has seen, in recent years, a flourishing
development in both theories and applications. One
of the reasons that most contributed to this growth
was the introduction of statistical learning techniques
into the system identification framework. Some of the
newest approaches include: i) the use of Sequential
Monte Carlo (SMC) techniques for state-space models,
Svensson and Schoén (2017), implemented by means of
probabilistic programming languages, Vajda (2014); ii)
the employment of kernel methods to impose smoothness
constraints on the learned function via a regularization
network, Pillonetto et al. (2014); Evgeniou et al. (2000).
Regularization techniques, initially developed for static
systems, Friedman et al. (2001), consisted into constraining
the loss provided by the Empirical Risk Minimization
(ERM) principle, Vapnik (1998). It is interesting to notice
that, however, all of the aforementioned methods can be
cast into a Bayesian framework. This means that prior
information on parameters or on the entire function can
be leveraged to guide the learning procedure by employing,
as an example, Gaussian Processes (GP), Rasmussen and
Williams (2006).

Another possible way to induce regularization is to use
artificially generated data. Ridge regression estimates
can be obtained by ordinary least squares regression on
an augmented dataset, where generated response values
are set to zero. In this way, the fitting procedure is
forced to shrink also the coefficients toward smaller
values, Friedman et al. (2001). Authors in Chapelle

et al. (2001) formalized the Vicinal Risk Minimization
(VRM) principle. Here, additional virtual examples can
be drawn from a defined vicinity distribution of the
training examples, to enlarge the support of the training
distribution. In this work the authors showed how, using
the VRM approach, one can obtain the regularized Ridge
regression and Support Vector Machine (SVM), Friedman
et al. (2001), solutions. This method is currently often
applied for training deep neural networks, in particular
when performing image classification. In fact, it is common
to define the vicinity of one image as the set of its
horizontal reflections, slight rotations, and mild scalings,
see Krizhevsky et al. (2012). In this setting, a recent
data augmentation technique has been introduced to
alleviate overfitting problems and sensitivity to adversarial
examples, Zhang et al. (2017). A related idea has
been presented by Abu-Mostafa (1994), where model
constraints are implemented by adding artificial data
examples that satisfy them. Differently from previously
cited methods, here the learning “hints” can be designed
by relying only on the independent variables.

Following the previous line of reasoning, we wondered
if synthetic data generation can be helpful for system
identification. In particular, we focus on the case where
additional input data (which, in dynamic systems, may
contain also past output samples) can be devised. Artificial
data can be used to regularize the estimation, especially in
a small-data regime. In this case, even a simple model is
hard to compute due to a very limited amount of samples
in the dataset. Examples of this kind can be found among,
e.g., biomedical applications like glucose dynamics, Cobelli
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et al. (2009), or biochemical/biotechnology processes,
where experiments can be of great cost, see Yang et al.
(2012). Another similar scenario occurs when performing
a measurement is costly and/or destructive, Chapelle et al.
(2010).

Suppose now to have at disposal such additional regressors’
dataset. The problem translates into how to effectively
leverage such information. One choice that naturally arises
is the framework of Semi-Supervised Learning (SSL),
Zhu (2011). Differently from the pure supervised and
unsupervised cases, in the SSL paradigm both supervised
and unsupervised data are supposed to be available. The
synthetic regressors’ dataset plays therefore the role of
the unsupervised dataset. Acquisitions measured through
a real experiment on the system, comprising both input
and ouput values, constitute the supervised dataset. In
this paper, we propose the Semi-Supervised Identification
(SSI) approach. Here, prior information embedded in the
distribution of the unsupervised dataset is employed in the
form of an additional regularization term, called manifold
reqularization. The contribution of this paper is to apply
this rationale to autoregressive models. The idea that we
adopted here is to generate the additional regressors in the
neighborhood of the existing ones, obtained from measured
data.

The remainder of the paper is organized as follows. Section
2 defines the problem formulation. Section 3 describes
the use of the semi-supervised techniques for making
use of synthetic data. In Section 5, the semi-supervised
parametric approach for learning autoregressive models is
highlighted. Section 6 compares simulated results of the
proposed approach with Ridge regression. Lastly, Section 7
is devoted to concluding remarks and future developments.

2. PROBLEM STATEMENT
2.1 System and data definitions

Let the NARX Single-Input Single-Output (SISO) model
be defined as:

S:ylt+1) =g(e®)+e(), (1)
where y(t) € R denotes the system output, g is a
nonlinear function, e(t) € R is an additive white noise,
and ¢ (t) € RUTOX1 i the regression vector such that:

et)=[y@), -, yt—r+1), @
u(t)a 7u(t_q+1)]T7

where r and ¢ denotes the orders of the autogressive and
exogenous part, respectively, with k = r 4+ q. We suppose
that the orders r and ¢ are known, and postpone their
estimate to future research.

In this paper, in order to test the idea firstly on simpler
problems and to guarantee that a global optimum model
can be achieved, we restrict ourselves to NARX models
which are linear in the parameters. Specifically, let the
function ¢ in (1) be:

9@ O1) =071 (p(®) = 20 w(el®). O

where v : RFX! — R™X! is a nonlinear mapping vector
function, and ~; represents the i-th component of . Thus,

7i(p(t)) is the i-th feature. The variable ¥ € R™*!
represents the vector of the m parameters that have to
be estimated from data.

The aim now is to identify systems of type (1) in the form
(3), with the help of two different datasets: a supervised
data set Dg, obtained from real experiments, and an
unsupervised one Dy, synthetically generated.

The supervised dataset is such that:

Ds={(us(t),y(t)) | 1<t<Ng}, (4
where ug(t) is the input at time ¢, y(¢) is the output
associated with the input ug(t), and Ng is the number
of supervised data.

The unsupervised dataset Dy is defined as:
Dy = {(uv (t),y0(t)) | 1<t<Ny}, (5
where uy (t) and yy(t) are, respectively, an input and an

output artificially generated, and Ny is the number of
these unsupervised data.

Notice that both the datasets Dg and Dy contain input
and output samples, although the latter consists only of
synthetic data.

2.2 Creating the datasets

In order to obtain a more compact representation, it is
useful to represent the observations and the regressors
in matrix form. By using the supervised dataset Dg, we
obtain the output vector Y € RV*1:

Y=[y(r+1) - y(Ns)]", (6)
which contains the observations y(t) stacked in row,
N = Ng — 7 is the number of outputs that it is possible to
employ for the identification stage, given 7 = max (r, q).

In the same way, it is possible to construct the N
supervised regressors pg(t) € RFX1 for 7 < t < Ng — 1,
as:

(pS(t): [y(t),---,y(t—?"—f—l),

r (7
us (t),-- us(t—q+1)]".

The features’ matrix G € RN*™ can be defined by
stacking all the features computed from the supervised
regressors (7), leading to:

o (sos (T))
G= : . (8)
’YT(SOS (Ns — 1))

It is possible to construct the model’s regressors as
in (7), by leveraging also on Dy, the dataset that
contains artificial inputs and outputs. There are, therefore,
N,y = Ny — 7 available unsupervised regressors ¢y (t) €
RF*! each one of them defined, for 7 <t < Ny — 1, as:

<)DU(IE):[yU(t)7"'7yU(t_7‘—i_1)7 (9)
T
uy (t), - up (t—q+1)] .

The (unsupervised) features’ matrix Gy € RV > groups

all these unsupervised regressors, as:
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’YT<80U (T))

Gy = (10)

’YT(SOU (NU - 1))

Combining the available information, we can define
the joint matrix, containing both supervised (7) and
unsupervised (9) regressors, as:

~ G
A
where G € RV-*™ and N, = N + N,y is the total number

of regressors, both supervised and unsupervised. From now
on, for simplicity, the i-th row of Y will be denoted as y ().

(11)

The aim now is to identify the system S by employing the
information contained in Dg and Dy .

3. MANIFOLD REGULARIZATION

The dataset Dy can be useful for discovering the relation
between inputs and outputs if the marginal probability
density p(¢), which generated the inputs, happens to be
informative about the conditional distribution p(y|y), see
Belkin et al. (2006). We can make this possible by stating
a specific assumption about the connection between the
marginal and the conditional distributions, Chapelle et al.
(2010):

Assumption 1. Semi-supervised smoothness

If two regressors ¢ (i) and ¢ (j) in a high-density region
are close, then so should be their corresponding outputs
y (i) and y (j).

Assumption 1, therefore, constrains the solution to be
smooth with respect to the manifold onto which the
regressors lie. This behaviour can be enforced by a
proper reqularization term, that should reflect the intrinsic
structure of p(¢). This term has a different taste with
respect to the standard Tikhonov one, that instead,
enforces a global smooth behaviour to the unknown
function. A possible choice for the manifold regularization
term, which enforces Assumption 1, has been advocated
in Belkin et al. (2006) as:

sg=/g||v-g|2 dp(so):/gg-A-gdp«o), (12)

where V and A are the gradient and the Laplace-Beltrami
operators along the manifold G, respectively, and p(y)
denotes the probability density function of the regressors
defined over G. The main idea behind the manifold
regularization rationale considered here is that the gradient
of g, and so Sy, must be small when Assumption 1 holds.
Then, minimizing S, with respect to model’s parameters
is a way to enforce Assumption 1.

The information about the input distribution p(p) is
rarely used because, most of the times, p(y), and G,
are unknown. It turns out that S; can be approximated
using the regressor graph, Belkin et al. (2005, 2006). This
is a weighted complete graph with the (supervised and
unsupervised) regressors as its vertexes, and the weight of
each edge defined as:

@@=l
T (13)

where o, € R is a tuning parameter. Now, let’s consider

the Laplacian matrix L = D — W, where D € RY~>*Nr g

the diagonal matrix with elements D;; = Zjvzl w; 5, and

W € RVN-*Nr is the matrix composed by the weights Wy ;-
A higher value of (13) indicates that two regressors are
similar. This rationale derives from a manifold learning
algorithm called Laplacian Eigenmaps, Belkin and Niyogi
(2003). It can be shown that, Belkin et al. (2006):

Sg:f/T~L-}~/,

- T
where Y = [g(gp(l)), e ,g((p(N,.))} € RM-<1 contains

the noiseless outputs, corresponding to both supervised
and unsupervised input regressors. In order to obtain the
approximation of S, (14), only the regressors are needed.
Thus, both supervised and unsupervised regressors can be
employed for this purpose. Notice that Y differs from Y,
since the former is a noisy vector of N observations, while
the latter is a noiseless vector of N, observations.

(14)

4. SYNTHETIC DATASET GENERATION

In this work, we adopted the following idea to generate
the artificial data. The idea is to generate the synthetic
regressors in the neighbourhood of the existing supervised
ones. The choice is motivated by the fact that, following
Assumption 1, if the system is smooth enough, similar
regressors should have a similar corresponding output. We
generate in this way p new datasets. Thus, the number of
unsupervised regressors will be N,y = p - N. The total
number of regressors data is N, = N+ N,y = (p+1)-N.
The method is formalized as follows.

Let Dy be composed of p unsupervised datasets ij,
1=1,...,pas:

v={(ul ).y ) | 1<t<Ng}. (15
We define the following relations:
ul; (1) = ug (t) + vi(t)
o e (1)

where vi(t) is a random variable, that determines the
distance of the p unsupervised points with respect to the
supervised one. Thus, the synthetic data { (u, (¢), v (t))}
form a “region” in the neighbourhood of a supervised
regressor { (us (t),y(t))}. A criterion for the selection of
the random variable v*(¢) is to consider that the regions
should not mix with each other, since this would lead to
non-smooth functions. We introduce a tuning parameter
a € R, allowing to regulate the regions’ maximum area. In
particular a = 1 will corresponds to the threshold between
mixed regions (achieved using o < 1) and completely
distinct regions (v > 1).

In order to use «, it is necessary to define a distribution of
v'(t) that depends on « and guarantees the aforementioned
properties. A possible way is to use a uniform distribution:

v'(t) ~U(~=h,h) 1<t<Nsg, i=1,....,p (17

where h > 0 determines the area of the unsupervised
points regions. To impose distinct regions, the following
inequalities must hold, for 7 <t < Ng—1,i=1,...,p:

d

5) (18)

ot () — s (t)]] <
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where d is the distance between the two closest supervised
regressors. It can be shown that (18) can be written as:

k 2
Z(vi(t—j+1))2§ (g) T<t<Ns—1, (19)

j=1

Since v’ (t — j + 1)| < h (it is generated from the random
variable (17)), the inequalities (19) hold if:

k A\ 2
RP<(=]) .
2= (3)
Recalling that h > 0, we have that (20) corresponds to:
he 4

The condition described in (21) imposes a constraint for h
to maintain Ng distinct regions. To make such a constraint
more or less conservative, it is possible to use «, for
examples, as follows:

(20)

(21)

d d
h = = :
20vk 20T+ ¢
Having defined the random variable v’(t), it is possible

to define the N,y unsupervised regressors ¢ (t) € R™*1,
t=1,...,p according to (9), for 7 <t < Ng — 1:

o () =Typ (), yp t—r+1), (
u%'](t)?"'7u1ltj(t_Q+l)]T'

(22)

23)

Using the unsupervised regressors computed in (23) using
the i-th dataset, it is possible to form the i-th unsupervised
features’ matrix G¢, € RV*™ as in (10):
V(i ()
G = : . (24)
o (W@ (Ns — 1))

The global (unsupervised) features’ matrix Gy € RN-vxm
can be therefore composed by stacking the matrices (24),
t=1,...,p: .
Gy
Gu=| : (25)
Gl

5. PARAMETRIC APPROACH
5.1 Parameters identification

In order to identify the true NARX system S in (1), the
classical Prediction Error Method (PEM) is used, Ljung
(1998). The predictor for (1) can be simply found as:

gt —1,0) =0T -y (1))

The value of the parameters’ is then estimated by
minimizing the variance of the prediction error by:
N 2
T =Y (v -9 (e

t=1

(26)

(27)

Since (27) could be ill-conditioned, a regularization term
is usally employed, leading as an example to the Ridge

regression problem, Friedman et al. (2001):
N 2
J@) =3 (yt) = 0" A(p®)) + 107,
t=1
where A > 0 controls the regularization strength. By
expressing (28) in matrix notation, we can write the cost
function as:

J@) =Y =G -0fl;+ A [0l

(28)

(29)

The semi-supervised approach pursued in this paper
consists into employing the manifold regularization term
(14), in order to include information about the local
smoothness of the function (leveraging on the unsupervised
data points). This leads to the following cost function:

Ju @) =||Y =G-9|a+ - YT-L-Y,  (30)

where Ap; > 0 has the same meaning of A.

Since EN/~: G- ¥, it holds that (14) can be rewritten as
YT.L.Y =9TGT - L-GY. Thus, (30) assumes the form:

Tar (0) = ||Y =G -0+ A -97GT -L-Gv.  (31)

Since (31) is the sum of two quadratic terms, it admits a
closed-form solution, that is:

~ ~ ~1—1
J= [GTGMM-GT-L-G} GTY,  (32)

where ¥ € R™*! represents the parameters’ estimate.

5.2 FEffective degrees of freedom

With the parameter’s estimate 5, it is trivial to compute
the model’s predictions as Y = G -9, with Y € RV*!, By
expanding the definition of ¢}, we can write:

~ ~ ~1—1
Y=G |G"G+My-G'-L-G| -G'Y=H-Y, (33)

with H € RV*¥. Following Friedman et al. (2001), the
number of /Eeffective degrees of freedom of a linear model,
such that Y = H - Y, can be found as:

v=Tr(H). (34)
A similar expression can be obtained for Ridge regression.
When Ayy = 0 or A = 0, v is equal to the number of
parameters of the linear model. The quantity in (34) will
be used to compare the application of the Ridge and the
manifold regularization terms. It is interesting to notice
that v can be used to efficiently compute an estimate of
the Leave One Out Cross-Validation (LOOCV) validation
score, see Friedman et al. (2001).

6. RESULTS

This section provides numerical examples in order to
compare the SSI method with Ridge regression. We tested
the proposed method on two nonlinear system, following
the results in Pillonetto et al. (2014):

1) y(t) = 0.5y(t — 1) — 0.05y(t — 2)% + u(t — 1)2
+0.8u(t — 2) + e(t)
e(t) ~ WN(0,1), u(t) ~ WN(0, 0.25)
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2) y(t) =0.8y(t — 1) +u(t —1)— 0.3t —1)3
+0.25u(t — 1)u(t — 2) — 0.3u(t — 2)
+0.24u(t — 2)3 — 0.2u(t — 2)u(t — 3)
—0.4u(t — 3) + e(t)

e(t) ~ WN(0,1), u(t) ~ WN(0, 1)

The system 1) has 4 parameters, while the system
2) presents 8 coefficients. The supervised dataset Dg,

generated from each systems, consists of Ng = 20 measures.

Thus, the problem is ill-conditioned and suited to test
regularization approaches. The unsupervised dataset Dy
is generated according to Section 4. The hyperparameter
of the Ridge regression method (29) is A, whereas the
hyperparameters of the manifold regression method (30)
are Ay, o, (the shape parameter of the Laplacian
Eigenmaps), « (the parameter controlling the area of the
generated unsupervised points) and p, i.e., the number of
additional unsupervised datasets. In our experiments, we
fixed p = 3.

In order to tune the respective hyperparameters of
the methods, an additional supervised dataset Dy of
Ny = 1000 points has been generated in the same way
as Dg. This has been done in order to assess the method
capability and value. For obvious reasons, Dy should not
be available. This problem is postponed to future research.
In order to assess the overall performance of the estimation
methods, a supervised testing dataset D of Ny = 10000
points is employed, generated analogously to Dg. Using
Dr it is possible to evaluate the NMAE (Normalized Mean
Absolute Error) metric:

Nr
t=1

AN
where 7(t) is the predicted test output in correspondence
of a test regressor, yr(t) is the true test output, and
yr is the mean value of the test outputs. A Monte
Carlo simulation has been carried out to show the
statistical significance of the proposed methodology, using
Nj; = 1000 runs. At each run, a different generation of the

random noise was considered. Table 1 reports the search
space of the hyperparameters.

50— yr(t)|

yr(t) — yr

NMAE = : (35)

Table 1. Values of the tuning parameters for
the parametric approach

Ridge regression

10000 log-spaced values
in [107%,10°]

Semi-Supervised Identification

A

100 log-spaced values in

Am (102,104
100 log-spaced values in
e (102,102
o 10 evenly spaced values
in [1,10]

Results are depicted in Figure 1 and 2 for the numerical
examples 1) and 2) respectively. The plots depict the
comparison of Ridge and manifold regularization, in term
of the error defined in (35). The manifold regularization
shows some improvement on standard Ridge regression.

1 - i
W 0.8 = == 1
=
Z 06 ]
0.4 :
Ridge regression Manifold regression
3 600 1 I Ridge regression
% 400 - I Manifold regression
5
8200r
©)
0 Il L
0 1 2 3 4

Effective degrees of freedom v

Fig. 1. Methods comparison for the system 1). Top) Plot of
the NMAE for the Ridge and manifold regularization
methods over 1000 runs. Bottom) Histogram of the
effective degrees of freedom

1
Ww 0.8 |
W 0.8 é +
% 0.6 i é 1
0.4 - =
Ridge regression Manifold regression
B 400 - I Ridge regression |
(&) . .
S I Manifold regression
3200
O
@)
O -
0 2 4 6 8

Effective degrees of freedom v

Fig. 2. Methods comparison for the system 2). Top) Plot of
the NMAE for the Ridge and manifold regularization
methods over 1000 runs. Bottom) Histogram of the
effective degrees of freedom

This behaviour can be better understood by looking at
the degrees of freedom v. As it is possible to observe, the
manifold regression achieves overall a lower complexity,
compared to Ridge regression. This latter method shows
also a larger spread over the 1000 simulation runs. The
manifold regression, instead, estimates models with almost
the same complexity. Notice that this complexity is
coherent with the heuristic of having a model complexity
such as N > 10 - v, condition which is almost always
respected when the manifold regularization is employed,
see Abu-Mostafa et al. (2012). Figures from 3 to 5
show the variation of the degrees of freedom with Ay,
for the different hyperparameters values, considering the
numerical example 2). It can be seen how, as p gets
larger, less regularization is needed: this is because the
unsupervised data acts as a regularizer. When « increases,
the unsupervised points are closer to the supervised ones:
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this makes the region for which we apply the smoothness
assumption smaller, and therefore more regularization is
needed. The effect of increasing o, consists into considering
all points as “close together”, thereby leading to a fitted
function which is equal to the mean of the measured
outputs. Thus, less regularization is required.

_ » Increasing p

0 102 10° 102 10*
Am

Fig. 3. Sensitivity analysis of the hyperparameters,
p={3,5,10,100}, 0. = 0.5, a =1

8
6 L
N4+ S
ol Increasing o~ ~
0 L L L
10 102 109 102 10*
Am

Fig. 4. Sensitivity analysis of the hyperparameters, p = 3,
o. =0.5, a={1,2,5,10}

_ ~ Increasing o,

0 102 100 10? 10*
)\M

Fig. 5. Sensitivity analysis of the hyperparameters, p = 3,
o.={05,1,5,50}, a =1

7. CONCLUSIONS AND FUTURE DEVELOPMENTS

In this paper, we presented a method for learning nonlinear
dynamical system by employing additional synthetic data.
The additional dataset is generated by perturbing the
measured regressors. In order to leverage such information,
the framework of Semi-Supervised Learning is used.
Following this idea, we derived a new regularization term,
that makes use of how the regressors are distributed in the
regressor space. We tested the approach in a parametric
setting on examples found in the related literature,
comparing the proposed regularization with the Ridge one.
Results shown that the method achieved better results
on numerical experiments. Future research is devoted to
define a hyperparameters’ selection method, evaluating
the effect of the number of additional datasets and of
the hyperparameters on the model performance, and a
comparison with more advanced parametric regularization
techniques.

REFERENCES

Abu-Mostafa, Y.S. (1994). Learning from hints. Journal
of Complezity, 10(1), 165-178.

Abu-Mostafa, Y.S., Magdon-Ismail, M., and Lin, H.T.
(2012). Learning from data, volume 4. AMLBook New
York, NY, USA.:.

Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps
for dimensionality reduction and data representation.
Neural computation, 15(6), 1373-1396.

Belkin, M., Niyogi, P., and Sindhwani, V. (2006). Manifold
regularization: A geometric framework for learning from
labeled and unlabeled examples. Journal of machine
learning research, 7(Nov), 2399-2434.

Belkin, M., Niyogi, P., and Sindhwani, V. (2005). On
manifold regularization. In AISTATS, 1.

Chapelle, O., Schlkopf, B., and Zien, A. (2010).
Semi-Supervised Learning. The MIT Press, 1st edition.

Chapelle, O., Weston, J., Bottou, L., and Vapnik, V.
(2001). Vicinal risk minimization. In Advances in neural
information processing systems, 416-422.

Cobelli, C., Dalla Man, C., Sparacino, G., Magni, L.,
De Nicolao, G., and Kovatchev, B.P. (2009). Diabetes:
models, signals, and control. IEEFE reviews in biomedical
engineering, 2, 54—96.

Evgeniou, T., Pontil, M., and Poggio, T. (2000).
Regularization networks and support vector machines.
Advances in computational mathematics, 13(1), 1-50.

Friedman, J., Hastie, T., and Tibshirani, R. (2001). The
elements of statistical learning, volume 1. Springer series
in statistics New York.

Krizhevsky, A., Sutskever, I., and Hinton, G.E. (2012).
Imagenet classification with deep convolutional neural
networks. In F. Pereira, C.J.C. Burges, L. Bottou,
and K.Q. Weinberger (eds.), Advances in Neural
Information Processing Systems 25, 1097-1105. Curran
Associates, Inc.

Ljung, L. (1998). System identification. In Signal analysis
and prediction, 163-173. Springer.

Pillonetto, G., Dinuzzo, F., Chen, T., De Nicolao,
G., and Ljung, L. (2014). Kernel methods in
system identification, machine learning and function
estimation: A survey. Automatica, 50(3), 657-682.

Rasmussen, C.E. and Williams, C.K. (2006). Gaussian
processes for machine learning, volume 1. MIT press
Cambridge.

Svensson, A. and Schén, T.B. (2017). A flexible

state—space model for learning nonlinear dynamical
systems. Automatica, 80, 189-199.

Vajda, S. (2014). Probabilistic programming. Academic
Press.

Vapnik, V. (1998). Statistical learning theory, volume 1.
Wiley New York.

Yang, J., Wei, H.L., Kadirkamanathan, V., and Lin, X.
(2012). System identification from small data sets
using an output jittering method with application to
model estimation of bioethanol production. In Machine
Learning and Cybernetics (ICMLC), 2012 International
Conference on, volume 3, 949-955. IEEE.

Zhang, H., Cisse, M., Dauphin, Y.N., and Lopez-Paz, D.
(2017). mixup: Beyond empirical risk minimization.
arXiv preprint arXiw:1710.09412.

Zhu, X. (2011). Semi-supervised learning. In Encyclopedia
of machine learning, 892-897. Springer.



