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Regularized kernel-based learning for system identi�cation

by Matteo Scandella

The problem of �nding a good mathematical model of the phenomenon under analysis is
a key topic in the control system community. In the past, this task was performed by ex-
perts of the �eld, but nowadays approaches that rely on experimental data and statistical
learning techniques have seen an always increasing interest. For this reason, a lot of di�er-
ent learning techniques were adapted from the estimation of static relations performed by
the statistical learning community to the identi�cation of dynamical relations employed by
control engineers. In recent times, kernel-based learning methods were employed for dy-
namical system modeling as part of this research trend. This thesis aims to further expand
the knowledge about this important family of methods. In the �rst part, the theoretical
foundation of this kind of techniques is presented in the necessary details. The second
part contains the innovative contribution of the thesis. Firstly, it is shown that there exists
more than one equivalent way to represent the identi�ed model when dealing with kernel
methods. Next, a new kernel approach for the identi�cation of continuous-time model is
proposed. Finally, the manifold regularization method in the case of dynamical systems
identi�cation is explored. Furthermore, a Bayesian perspective of the manifold regulariza-
tion is provided. The thesis ends with a practical application of system identi�cation using
kernel methods in the �eld of nuclear physics.
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List of Notations

Important sets
• N is the set of all natural numbers;

• Z is the set of all integer numbers;

• Q is the set of all rational numbers;

• Q+ is the set of all strictly-positive natural number;

• R is the set of all real numbers;

• R+ is the set of all strictly-positive real number;

• C is the set of all complex numbers;

• lp is the space of all p-summable sequence [108]:

– l1 is the space of sequences whose series is absolutely convergent;

– l2 is the space of square summable sequences;

– l∞ the space of bounded sequences;

• Lp (Ω, µ) is the space of all p-inferable functions with domain Ω according to the
measure µ [108]:

– L2 (Ω, µ) is the space of square-integrable functions;

– L∞ (Ω, µ) is the space of bounded functions;

Mathematical constants
• π = 3.141592653589793 ∈ R;

• e = 2.718281828459046 ∈ R;

• j is the imaginary unit;

Vectors and matrices
Let n,m ∈ N \ {0}.

• Generic scalars are indicated with a lower-case letter, e.g. a;

• Generic vectors are indicated with a lower-case bold letter, e.g. v;

• Generic matrices are indicated with a upper-case bold letter, e.g. A;
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• Set of all real matrices with n rows and m columns: Rn×m;

• Identity matrix with n rows: In ∈ Rn×n;

• Zero matrix with n rows and m columns 0n×m ∈ Rn×m;

• The transpose of the matrixA isA>;

• The inverse of the invertible square matrixA isA−1;

• The determinant of the square matrixA is detA;

• The trace of a square matrixA is TrA

• The rank of the matrixA is rankA;

• The vector en,i ∈ Rn×1 is a column vector with 1 at the i-th position and 0 in all the
other positions;

Statistics
• Given a distribution p than supp (p) is the support of p;

• Given two independent random variables a and b then a⊥b

• The expected value of a random variable X is indicated as

E [ϕ (X)] =

∫
ϕ (x) p (x) dx (1)

where ϕ is some function and p the pdf of the distribution of X ;

• The variance of a random variable X is indicated as Var (X);

• The covariance between two random variables X and Y is indicated as Cov (X,Y );

• The normal distribution with mean µ ∈ Rn×1 and variance Σ ∈ Rn×n is N (µ,Σ);

• The pdf of the normal distribution with mean µ ∈ Rn×1 and variance Σ ∈ Rn×n
evaluated in x ∈ Rn×1 is N (x |µ,Σ);

• The uniform distribution between a ∈ R and b ∈ R is U (a, b);

• The pdf of the uniform distribution between a ∈ R and b ∈ R evaluated in x ∈ R is
U (x |a, b);

Dynamical system theory
• Generic dynamical systems are indicated with a formal upper-case letter, e.g. G ;

• Transfer functions are indicated with an upper-case letter, e.g. G;

• The Laplace variable is indicated with s ∈ C;

• The Laplace transform of x (t) is indicated with X (s) = L [x] (s);

• The Laplace anti-transform of X (s) is indicated with x (t) = L−1 [X] (t)

• The Fourier transform of x (t) is indicated with X (ω) = F [x] (s);

• The Fourier anti-transform of X (ω) is indicated with x (t) = F−1 [X] (t);

• The convolution of two functions is indicated with [a ? b] (t);
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Other notations
• Generic sets are indicated with a calligraphic upper-case letter, e.g. G;

• Generic functions are indicated with a lower case letter, e.g. g;

• The Beta function [88] is indicated with B (a, b)

• Given a function g : Rd → R than

∇g (x) =

[
∂

∂x1
g (x) · · ·

∂

∂xd
g (x)

]
∈ R1×d (2)

is the gradient of g.

• A is the closure of the set A;

• GivenA ⊆ B, where B is a vector space, then span (A) is the vector space containing
all the �nite linear combinations of the elements of A;
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Introduction

Context of the Thesis
Understanding the natural phenomena that happen around us is the ultimate aim of science.
This knowledge can be expressed in various forms, but the more universal one employs
mathematical models. These abstract entities are composed of mathematical objects, and
they provide a simpli�ed version of the natural phenomenon they are describing. For this
reason, they are fundamental in modern science and engineering and they are employed in
the most diverse �elds. For this reason, the activities that aim at the construction of models
are an important keystone of the current society.

In most cases, modeling is an activity that is performed mainly by experts of the phe-
nomenon that could exploit their knowledge to provide a complex and accurate model.
This approach is called white-box modeling and it is by far the more common way to ap-
proach the problem. However, this is an expensive procedure and, in most cases, the people
that plan to use the model have di�erent needs to the one that provides the model and the
complexity of a white-box model is not always desirable. Therefore, in the last decades,
a di�erent modeling approach has seen increasing interest: black-box modeling. This ra-
tionale exploits statistical learning methods coupled with a set of observations taken from
the phenomenon under study. Black-box modeling for static systems has seen an always
increasing interest thanks to the explosion of computational power. The technique that are
used for this aim can be divided in two categories based on the type of system that is under
analysis. When the variables of a system depend only on the values of the other variables
taken at the same time, then the system is called static system. The modeling of this type of
systems is tackled by the machine learning community [17, 44, 125]. Vice versa, the system
identi�cation community [19, 72, 98, 117, 128] deals with the so-called dynamical system.
In this type of model the variables depend also on the what happen in the past.

Most system identi�cation methodologies rely on the Prediction Error Method (PEM) ratio-
nale [19, 72, 117]. Here, the identi�ed model is selected from a certain set, called hypothesis
set, as the one that minimizes the prediction error on the available dataset. An important al-
ternative rationale that can be found in the literature is the Simulation Error Method (SEM)
approach [20, 99, 100] where the selected model is the one that minimizes the simulation
error on the available dataset. Other methodologies leverage some of the properties of a
dynamical system to avoid the needs of an optimization technique, e.g. subspace meth-
ods [41, 89, 103] or non-parametric Frequency Response Function (FRF) estimation [68, 98].
In general, all the various rationales select the identi�ed model from a certain hypothesis
set. Therefore, the choice of the right set is a fundamental part of the identi�cation proce-
dure.
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The hypothesis set determines the type of system we want to identify and its complex-
ity. For example, the simplest and most studied class of systems is composed of Linear
and Time-Invariant (LTI) systems [19, 46, 72, 95, 98, 128]. However, it is also possible to
use more complex families such as Linear and Time-Varying (LTV) [29, 68, 69], Linear and
Parameter-Varying (LPV) [8, 26, 93, 123, 127] or non-linear systems [28, 86, 97, 100, 133].
Understanding what is the best hypothesis set, for the application at hand, is a di�cult task,
but a fundamental one. In fact, the identi�ed system should be the simplest one that reaches
satisfactory performance for the application at hand.

Based on the type of hypothesis space the various algorithms can be divided into two cat-
egories: parametric [19, 46, 72, 100] and non-parametric [68, 95, 98]. In the �rst class, the
hypothesis space has a known bijection with Rd where d is a certain natural number. In
this case, the algorithm boils down to the selection of the best d-length vector that corre-
sponds to the best model in the hypothesis set according to the used criterion. This vec-
tor is typically called the parameters vector. In these settings, among others, �nds place
methods that employ ARMAX [19, 72] or OE [47, 95] models, for linear systems, or neural
network [28, 92], wavelets [133], or polynomials [99] for non-linear systems. Vice-versa,
for the non-parametric methods this explicit parametrization is not possible. For example,
in this category, are present various FRF estimators [68, 98] or the kernel methods [37, 51].

The focus of this Thesis is on the non-parametric kernel methods for system identi�cation.
These methods expand the theory of linear modeling from data allowing the use of an in-
�nite amount of features to characterize the system behavior. Usually, kernel methods are
endowed with a regularization term, such as Tikhonov regularization [111] or manifold reg-
ularization [11], that equips the method with a �exible way to tune the complexity of the
estimated model and to deal with over�tting problems. In this framework, the estimation is
recast into an optimization problem inside a, potentially, in�nite-dimensional Reproducing
Kernel Hilbert space (RKHS) [4, 109]. Thanks to the Representer theorem [11, 40, 111], such
a problem boils down to �nite-dimensional optimization, whose solution can be treated
analytically, if the cost is quadratic. These kind of approaches have been successfully em-
ployed for dynamical models of various types, such as LTI [30, 95], LPV [123], LTV [68] or
non-linear [97] systems.

New contributions of the Thesis
This thesis aims to expand the knowledge about kernel methods for the system identi�ca-
tion problem. For this reason, the thesis contains four di�erent new theoretical contribu-
tions and a practical application in the �eld of nuclear physics.

The �rst contribution deals with a typical case of many practical applications, where the
kernel is truncated into a degenerate kernel due to limited numerical precision. As a con-
sequence, the optimization problem is no longer strictly convex and in�nite equivalent so-
lutions exist. The main message that is conveyed is that such an apparent problem actually
allows enforcing some additional desired properties on the estimated model. In particular,
it is shown that this additional freedom can be used to: (i) select the solution that mini-
mizes the number of features (thus reducing the computational requirements to perform
predictions on new data); (ii) tackle the ill-conditioning of the manifold regularization for
semi-supervised problems [11].

Most of the system-identi�cation literature is based on discrete-time models [19, 72, 100] for
the discrete nature of input/output measurements. However, continuous-time models are
the most used for control and analysis purpose, and they are not constrained to a certain
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sampling frequency. For this reason, the second contribution introduces a novel black-
box non-parametric kernel-based technique for the identi�cation of continuous-time LTI
systems based on the work of [95]. In particular, the focus will be on dataset taken from
low exciting inputs such as the step signal because they are very common excitation that
can be applied to almost every real system. Additionally, the proposed method does not
require evenly sampled data but can also work with irregularly sampled one.

The third contribution investigates the kernel-based estimation of nonlinear dynamical
systems via regularization using arti�cially augmented datasets. Such idea seems partic-
ularly promising in all applications where there is some prior knowledge about the sys-
tem [10, 11, 27], but only a small amount of data are available as running new experiments
is di�cult or too costly, e.g. some biomedical systems like glucose dynamics [64] or com-
plex industrial plants [135]. More speci�cally, the focus will be on Nonlinear Finite Impulse
Response (NFIR) systems [132], in that they represent a wide range of applications [5, 80]
and, for such models, augmented regressors can be generated without running new exper-
iments on the systems. The author proposes a novel way to generate arti�cial data that
can be employed by a manifold regularization term [11] to improve the estimation. This
type of regularization penalizes the roughness of the unknown function alongside the man-
ifold where the regressors are supposedly constrained. Typically, it is used to solve semi-
supervised learning problems or when the regressor distribution contains some information
on the system [11, 87]. In these settings, the manifold is approximated using a graph that
links the regressors to their neighbor [11, 15, 115]. For this reason, it is, also, presented a
novel approach for the selection of the graph topology that exploits the properties of the
dynamical behavior of the system.

Employing the manifold regularization, however, introduces some hyper-parameters that
have to be tuned. The role of hyperparameters selection is similar to that of model or-
der determination in traditional parametric system identi�cation, with the di�erence that
now we are not restricted to choose from a discrete grid of values. Common methods for
hyperparameters estimation consist in various cross-validation strategies such as General-
ized Cross-Validation (GCV) [44, 82] or the maximum likelihood methods [82, 104]. Even
though the maximum likelihood estimator has been shown to not converge to an “opti-
mal” estimate in a speci�c Mean Square Error (MSE) sense [82] (as opposed to the GCV
approach), it was observed how maximum likelihood can better balance the trade-o� be-
tween data �t and model complexity. It is important to notice that the maximum likelihood
approach is available only when the regularized problems admits also a Bayesian interpreta-
tion [31, 95, 97, 104]. For this reason, as a fourth contribution, it is shown a novel Bayesian
interpretation of manifold regularization, that allows hyperparameters to be tuned using
this proven methodology.

To end the thesis, a practical application of kernel methods in the context of nuclear physics
is presented. To characterize the property of particles, physicists perform an experiment
that allows measuring the energy decay after a collision of the particles with a target [1, 74].
Currently, the measured signal is analyzed by an expert that can manually classify the par-
ticle by looking at the signal shape [42]. Here, the author aim to automate this procedure
using a sequence of system identi�cation techniques and machine learning ones. In partic-
ular, the signal produced by the sensor is very similar to a truncated impulse response of a
linear system. Therefore, a non-parametric kernel-based identi�cation technique is used to
identify a high-dimensional Finite Impulse Response (FIR) system that can be reduced to a
simpler model using a model reduction technique. After that, a neural network is trained
to classify the particles using the time constants of the identi�ed model.
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Thesis structure
The remainder of the Thesis is organized as follow:

• Chapter 1 explains the basic concepts behind the learning methods that relies on
RKHS for dynamical systems;

• Chapter 2 continues the previous Chapter by explaining how the kernel methods
can be employed for dynamical system identi�cation;

• Chapter 3 delves into the �rst new contribution of this Thesis by explaining how to
leverage the degeneracy of the kernel;

• Chapter 4 illustrates the proposed continuous-time LTI identi�cation approach of
the second contribution;

• Chapter 5 explains how to employ the manifold regularization for non-linear dy-
namical systems;

• Chapter 6 presents the Bayesian perspective when employing the manifold regular-
ization;

• Chapter 7 describes the application of the kernel methods for the classi�cation of
nuclear particles;
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PART I

State of the art on kernel-based
system identification
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CHAPTER 1

Kernel-based learning methods for
static models

This chapter brie�y reviews the literature about kernel-based learning for the identi�cation
of a non-linear function. In particular, the following sections delve into the Reproducing
Kernel Hilbert space (RKHS) and their application for non-linear regression. The Tikhonov
and manifold regularizations will be introduced as methods to regulate the bias-variance
trade-o�. Furthermore, the semi-supervised regression using manifold learning and RKHS
is going to be brie�y discussed.

The same concepts are, then, reviewed from a Bayesian perspective using the so-called
Gaussian process regression. This allows de�ning a way to tune the hyper-parameters of
the method and it gives a di�erent way to interpret them.

This chapter is organized as follow:

• Section 1.1 introduces the concept of Reproducing Kernel Hilbert space;

• Section 1.2 explains how to use RKHS to identify non-linear functions;

• Section 1.3 delves into the Bayesian perspective of the method explained in the pre-
vious sections;

• Section 1.4 introduces a di�erent regularization method used for the semi-supervised
learning;

• Section 1.5 contains an explanation on how to select the various hyper-parameters.

1.1 Reproducing Kernel Hilbert Spaces
This section lays the basis to the theory behind the Reproducing Kernel Hilbert space
(RKHS). Since these spaces are a special case of Hilbert spaces, to follow this section, some
background of functional analysis is needed. This knowledge can be found in a lot of dif-
ferent mathematical books [108, 110].
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1.1.1 RKHS definition and basic properties
De�nition 1.1 (RKHS). LetH be an Hilbert space with inner product 〈·, ·〉H and norm ‖·‖H.
The spaceH is called RKHS if and only if:

a) its elements are real functions that share the same domain X

u ∈ H → u : X → R (1.1)

b) for each element x ∈ X , the evaluator functional Lx, i.e.

Lx : H → R (1.2)
u→ u (x) (1.3)

is linear and continuous.

Remark 1.1. The evaluator functional Lx is always linear because we have

Lx (αu+ βv) = (αu+ βv) (x) (1.4)
= αu (x) + βv (x) (1.5)
= αLx (u) + βLx (v) (1.6)

where α, β ∈ R, x ∈ X and u, v ∈ H.

Now, Let x be an element of X and Lx be its evaluator functional. Since Lx is continuous
and linear, we have that Lx ∈ H∗, whereH∗ is the dual space [110] ofH. Therefore, thanks
to the Riesz-Fréchet representation theorem [105, 110], there exists a function rx ∈ H such
that

Lx (u) = 〈rx, u〉H ∀u ∈ H (1.7)

then, for the de�nition of Lx, we can write

u (x) = 〈rx, u〉H ∀u ∈ H (1.8)

this important property, called reproducing property, allows evaluating all the functions in-
side the RKHS. The only requirement is to �nd a way to associate each element x ∈ X to
its right function rx.

De�nition 1.2 (Representer function). Let x ∈ X , then the function rx ∈ H, such that
u (x) = 〈rx, u〉H ∀u ∈ H, is called representer function of x.

These representer functions allow de�ning the entire RKHS as stated by the following the-
orem.

Theorem 1.1. LetH be an RKHS containing functions with domain X . Then

H = span {rx|x ∈ X} (1.9)

Remark 1.2. From the de�nition of span, the relation (1.9) can be rewritten as

H =

∞⋃
n=1

{
n∑
i=1

cirxi s.t. x1, . . . , xn ∈ X and c1, . . . , cn ∈ R

}
(1.10)
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therefore, given u ∈ H they exist x1, . . . , xn ∈ X and c1, . . . , cn ∈ R such that

u (z) =
n∑
i=1

cirxi (z) (1.11)

where z ∈ X is a generic argument.

Now, it is possible to introduce the concept of reproducing kernel.

De�nition 1.3 (Reproducing kernel). Let H be an RKHS containing functions with domain
X . Then the function

k : X × X → R (1.12)
(x, y)→ 〈rx, ry〉H (1.13)

is called reproducing kernel ofH.

The reproducing kernel k of an RKHS H is a fundamental object for two reasons: (i) it
fully characterize its RKHS and (ii) it provides a way to easily de�ne new RKHS. The �rst
statement is due to the following theorem.

Theorem 1.2. Let H1 and H2 be two RKHS. If they admit the same reproducing kernel k,
thenH1 = H2.

The second statement is a direct consequence of the following theorem.

Theorem 1.3 (Moore-Aronszajn Theorem [4]). Given a function k : X ×X → R such that:

• the function is symmetric

k (x, y) = k (y, x) ∀x, y ∈ X (1.14)

• the function is positive semi-de�nite

n∑
i=1

n∑
j=1

cicjk (xi, xj) ≥ 0

∀n ∈ N \ {0}
∀c = [c1, . . . cn] ∈ R1×n

∀x = [x1, . . . xn] ∈ X 1×n
(1.15)

then, there exists an RKHSH with reproducing kernel k.

This theorem tells us that a function to be a valid reproducing kernel has to be symmetric
and positive semi-de�nite. Furthermore, every function with these two properties is a valid
kernel of a certain RKHS. Therefore, to de�ne an RKHS it is enough to �nd a function with
these properties.

Remark 1.3. Given the kernel k, is always possible to �nd the various representer functions
rx of the same RKHS. In particular, the evaluation of the representer of x ∈ X in y ∈ X is

rx (y) = 〈rx, ry〉 = k (x, y) (1.16)

Therefore
rx = k (x, ·) (1.17)

For this reason, the representer functions are often called kernel slice.
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Remark 1.4. The second condition of Theorem 1.3 requires that the kernel function is
positive semi-de�nite. This condition is equivalent to ask that the matrixK ∈ Rn×n whose
element (i, j) is k (xi, xj) is a positive semi-de�nite matrix ∀x = [x1, . . . xn] ∈ X 1×n and
∀n ∈ N \ {0}.

To better understand these concepts, consider the following examples.

Example 1.1: Constant kernel

The constant kernel is the simplest kernel and it is de�ned as

k : X × X → R (1.18)
(x, y) = 1 (1.19)

It is straightforward to see that the two condition of Theorem 1.3 are respected.
Following (1.17), the representer of x ∈ X is

rx = k (x, ·) = 1 (1.20)

From Remark 1.1, the RKHS associated with the constant kernel is the span of a set
containing constant functions. Therefore, the constant kernel de�nes the space of
all constant functions.

Example 1.2: Linear kernel

Another very simple kernel is the linear kernel.

k : Rd×1 × Rd×1 → R (1.21)
(x,y) = x>y (1.22)

where d ∈ N \ {0}.
It is trivial to see that this kernel is symmetric and positive semi-de�nite. Therefore,
the conditions of Theorem 1.3 are respected.
Following (1.17), the representer of x ∈ Rd×1 is

rx (z) = x>z (1.23)

From Theorem 1.2, the RKHS associated with the linear kernel is the span of a set
containing linear functions. Therefore, there exist n ∈ N \ {0}, x1, . . . ,xn ∈ Rd×1
and c1, . . . , cn ∈ R such that the generic function u ∈ H evaluated in z ∈ Rd×1 can
be written as

u (z) =
n∑
i=1

cirxi (z) =
n∑
i=1

cix
>
i z =

(
n∑
i=1

cixi

)>
z = w>z (1.24)

Now, we can see that the generic function u is a linear function and therefore the
RKHSH, de�ned using the linear kernel, is the space of all linear function.

Example 1.3: Gaussian kernel

This kernel is one of the most utilized because it can be shown that its correspond-
ing RKHS contains a good approximation for each square-integrable functions. The
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Gaussian kernel, often called squared-exponential kernel, heat kernel or RBF kernel, is
de�ned as follow:

k : X × X → R (1.25)

(x, y) = e−
d(x−y)2
σ2 (1.26)

where σ ∈ R+ is a positive constants often called width of the kernel and d is a valid
distance de�ned on the set X . For example, if X ∈ Rd, we can use the Euclidian
distance, i.e.

d (x− y) = ‖x− y‖2 (1.27)

Some in-depth analysis of this kernel can be found in the literature [119, 129] and
some other properties will be discussed later in this chapter.

Example 1.4: Space of band limited function

Consider the set containing all the band-limited functions

H =
{
u ∈ L2 (R) s.t. supp (F [u]) ⊂ [−a, a]

}
(1.28)

where a ∈ R+ is the maximum frequency of the functions inside the set. It is possible
to show that this, in fact, a Hilbert space with the inner product

〈u, v〉H =

+∞∫
−∞

u (x) v (x) dx (1.29)

furthermore, it can be shown that the evaluator functional of the functions insideH
is continuous.
For these reason,H is a valid RKHS. Its kernel is

kH (y, x) =
sin (a (y − x))

π (y − x)
(1.30)

therefore, for Remark 1.2, there exist n ∈ N\{0}, t1, . . . , tn ∈ R and c1, . . . , cn ∈ R
such that the generic function u ∈ H evaluated in t ∈ X can be written as

u (t) =
n∑
i=1

cirti (t) =
n∑
i=1

ci
sin (a (t− ti))
π (t− ti)

(1.31)

Now, if we set ci = u (ti) and ti = i
2a , we can note that this formula correspond

to the Whittaker–Shannon interpolation formula used to reconstruct band-limited
signals from a set of samples taken with a sampling frequency of 2a.
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Example 1.5: Spline kernel

Another famous kernel is the spline kernel [131] that is de�ned as

k (x, y) =

1∫
0

Gq (a, x)Gq (b, x) dx (1.32)

where q ∈ N \ {0} and

Gq (a, x) =
1

(q − 1)!

{
(a− x)q−1 if a ≥ x
0 if a < x

(1.33)

This kernel de�nes the following RKHS

H =
{
u ∈ L2 ([0, 1]) s.t. u(m) (0) ,∀m = 0, . . . q − 1 and u is continuous

}
(1.34)

Therefore, it contains all the continuous functions that have the �rst q−1 derivative
evaluated in 0 equal to 0.

1.1.2 Mercer theorem
Using the theorems shown before, it is possible to de�ne an RKHS and to understand what
kind of functions are contained in the space, but it is not easy to understand the norm ‖·‖H
and the inner product 〈·, ·〉H of the space. To do so, we will consider only the case where:

• X is a compact set with a probability distribution π de�ned on it;

• the kernel k is continuous on X × X .

These are not hard restrictions. For example, all the kernels cited before respect these con-
dition in this category (with an appropriate restricted domain if necessary).

In these settings, it is possible to prove the following important theorem.

Theorem 1.4 (Mercer Theorem [109]). Let k be a continuous valid kernel and H its corre-
sponding RKHS. Then the operator T : L2 (X , π)→ L2 (X , π) de�ned as

T [u] (x) =

∫
X
k (x, y)u (y) dπ (y) (1.35)

has the following properties:

1. the eigenfunctions {ϕi}∞i of T are an orthonormal base of L2 (X , π);

2. the eigenvalues {σi}∞i of T are all non-negative with �nite multiplicity;

3. all the eigenfunctions {ϕi}∞i of T are elements of the RKHSH;

4. the functions ψi = σiϕi compose a orthonormal base of H (by removing the ones with
the corresponding eigenvalue equal to 0);

5. a function u ∈ H if and only if

M (u) =

∞∑
i=1

〈u, ϕi〉2π
σ2i

< +∞ (1.36)
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where 〈·, ·〉π is the L2 (X , π) inner product and the 0 eigenvalues are removed from the
sum;

6. the induced norm of u ∈ H according to the RKHSH is

‖u‖2H = M (u) ; (1.37)

7. the kernel k evaluated in (x, y) ∈ X × X can be written as

k (x, y) =

∞∑
i=1

σ2i ϕi (x)ϕi (y) (1.38)

=

∞∑
i=1

ψi (x)ψi (y) (1.39)

and this series converges for every value of (x, y) ∈ X × X . This formulation is called
Mercer expansion of the kernel.

This theorem provides a lot of information about the space H. First of all, it shows a way
to compute an orthonormal base of the space and, therefore, to understand its dimension.
Furthermore, it provides a di�erent condition to check if a function is inside the space and
a way to analyze the behavior of the induced norm of the spaceH.

Following the theorem, the dimension of the space is equal to the number of eigenvalues
σi that are not zero. Based on this fact, it is possible to classify the RKHS spaces into two
categories.

De�nition 1.4 (Degenerate and non-degenerate kernels). A kernel k and its corresponding
RKHSH are called degenerate if and only if there is only a �nite number of eigenvalues σi, as
de�ned in Theorem 1.4, that are strictly positive. Otherwise, they are called non-degenerate.

Degenerate kernels have a �nite dimension and their Mercer expansion (1.38) is a �nite sum-
mation while for the non-degenerate kernels the mercer expansion is a convergent series.
For example, the linear kernel, as described in Example 1.2, is degenerate with dimension d
and the Gaussian kernel is non-degenerate with a not �nite dimension.

Consider, now, the norm (1.37) of the function u ∈ H. This term is a summation of ratios
between

• the projection of the function u on the eigenfunction ψi;

• the square of the associated eigenvalue σi;

therefore a function has a large norm when the projections on the eigenfunctions, associated
with a small eigenvalue, are signi�cant. For this reason, the functions with large norm are
the one that behaves more “similarly” to the eigenfunctions with small eigenvalues and
vice versa the functions with a small norm are “similar” to the eigenfunctions with large
eigenvalue. To better understand this concept consider the following example.

Example 1.6: Gaussian kernel eigenfunctions and eigenvalues

In general, it is not straightforward to compute the eigenfunctions and the eigen-
values of the Mercer expansion. For the Gaussian kernel there are some theoretical
results [104, 119, 138].
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Consider the case whereX ⊂ R, π is a normal distribution with mean 0 and variance
η2, i.e. N

(
0, η2

)
, and the norm used is the Euclidian norm. Here, the kernel is

k (x, y) = e−
(x−y)2
σ2 (1.40)

where σ ∈ R is strictly positive.
It can be shown that the i-th eigenfunction and eigenvalue (ordered from the largest
eigenvalue to the smallest) is:

σ2i =

√
2a

A

(
b

A

)i
(1.41)

ψi (x) = e(a−c)x
2
Hi

(√
2cx
)

(1.42)

where a = 4−1η−2, b = σ−2, c =
√
a2 + 2ab,A = a+b+c andHi is the Hermitian

polynomial [53] of order i. The �rst four eigenfunctions can be seen in Figure 1.1
and the �rst twenty eigenvalues are reported in Figure 1.2.
From these plots, it is possible to note that the eigenfunctions become more oscil-
lating when their corresponding eigenvalues decrease. For this reason, the norm
associated with the Gaussian kernel increases when the function is more oscillating.
In particular, it is possible to show that [75, 129]

‖u‖2H =
1

2π

+∞∫
−∞

|F [u] (ω)|2 e
σ2ω2

2 dω (1.43)

where it is possible to note that the norm becomes bigger when the function u con-
tains large components at higher frequencies.

1.1.3 Defining new kernels
In the previous sections, it is explained how to analyze a kernel and its corresponding RKHS,
but it is not shown how to de�ne new and more complex kernels. In order to do so, consider
the following theorems.

Theorem 1.5 (Sum of kernels [109]). Let k1 : X × X → R and k2 : X × X → R be two
valid kernels that de�ne, respectively, the spaces H1 and H2 and a, b ∈ R be strictly positive
real numbers. Then the function

k : X × X → R (1.44)
(x, y)→ ak1 (x, y) + bk2 (x, y) (1.45)

is a valid kernel and it de�nes the space

H = {u s.t. ∃u1 ∈ H1, u2 ∈ H2 s.t. u (x) = au1 (x) + bu2 (x) , ∀x ∈ X} (1.46)

Theorem 1.6 (Product of kernels [109]). Let k1 : X ×X → R and k2 : X ×X → R be two
valid kernels that de�nes, respectively, the spacesH1 andH2. Then the function

k : X × X → R (1.47)
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Figure 1.1: Plot of the �rst 4 eigenfunctions of the Gaussian kernel with
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Figure 1.2: Plot of the �rst 20 eigenvalues of the Gaussian kernel with
η2 = σ2 = 1.
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(x, y)→ k1 (x, y) · k2 (x, y) (1.48)

is a valid kernel and it de�nes the space

H = {u s.t. ∃u1 ∈ H1, u2 ∈ H2 s.t. u (x) = u1 (x) · u2 (x) ,∀x ∈ X} (1.49)

Remark 1.5. From Theorem 1.5, it is possible to see that if we stretch the kernel with a
positive scalar, we obtain a new valid kernel.

These two theorems provide a way to combine di�erent simple kernels in order to create a
more complicated one. Consider the following examples.

Example 1.7: Space of linear a�ne functions

Consider the following kernel

k : Rd×1 × Rd×1 → R (1.50)
(x,y) = x>y + 1 (1.51)

This kernel is the sum of a linear kernel and a constant kernel. Therefore, for Theo-
rem 1.5, the associated space is

H =
{
u s.t. ∃w ∈ Rd×1, c ∈ R s.t. u (x) = w>x+ c,∀x ∈ X

}
(1.52)

because, as shown in Example 1.2, the linear kernel de�nes the space of linear func-
tions and the constant kernel, as shown in Example 1.1, contains all the constant
functions. Therefore, this space contains all the linear a�ne functions.

Example 1.8: Space of polynomial functions

Consider the following kernel

k : Rd×1 × Rd×1 → R (1.53)

(x,y) =
(
x>y + 1

)d
(1.54)

where d ∈ N.
This kernel is the product of d valid kernel and therefore, for Theorem 1.6, is also a
valid kernel. Furthermore, a product of d a�ne functions is a polynomial with degree
d. For this reason, the RKHS associated with this kernel contains all the polynomial
of degree d.

1.2 Non-linear regression using RKHS
In the previous section, a formal mathematical introduction on the RKHS and their prop-
erties is presented. This section delves into the application of these special spaces in the
statistical learning theory. In particular, the focus will be on the regression because it is
more useful for system identi�cation.
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1.2.1 Intuition and kernel trick
To understand how the RKHS can be useful for learning, consider the following linear re-
gression model

yi = ğ (xi) + ei

= γ (xi)
> ϑ̆+ ei

=

nϑ∑
j=1

ϑ̆jγj (xi) + ei

i = 1, . . . , n (1.55)

where

• n ∈ N is length of the dataset;

• nϑ ∈ N is the number of parameters;

• xi ∈ X ⊆ Rnx×1, with i = 1, . . . , n, are the regressors;

• yi ∈ R, with i = 1, . . . , n, are the measured outputs;

• ei ∈ R, with i = 1, . . . , n, are IID gaussian distributed noises, i.e. ei ∼ N
(
0, η2

)
;

• ϑ̆ =
[
ϑ̆1, . . . , ϑ̆nϑ

]>
∈ Rnϑ×1 is a vector composed by the unknown parameters;

• γ (x) = [γ1 (x) , . . . , γnϑ (x)]> ∈ Rnϑ×1 is the function, often called feature map,
that maps the regressors in the features space;

In this regression model, the aim is to �nd the function g : Rnx×1 → R that is inside the
hypothesis set

H = span {γ1, . . . , γnϑ} (1.56)

=
{
u s.t. ∃ϑ ∈ Rnϑ×1 s.t. u (x) = γ (x)> ϑ,∀x ∈ X

}
(1.57)

that better explains the phenomena at hand.

Following the reasoning behind the standard ridge regression [17, 44], we can estimate the
parameters ϑ̆ by minimizing the cost function

ϑ̂ = arg min
ϑ∈Rnϑ×1

{J (ϑ)} (1.58)

J (ϑ) =
n∑
i=1

yi − nϑ∑
j=1

ϑjγj (xi)

2

+ τ

nϑ∑
j=1

ϑ2j (1.59)

where τ ∈ R+ is the ridge regularization strength. It is well known that the minimizer of
this cost function can be computed analytically [17, 44], in particular

ϑ̂ =
(
ΓΓ> + τInϑ

)−1
Γy> (1.60)

where

Γ =
[
γ (x1) · · · γ (xn)

]
∈ Rnϑ×n (1.61)

y =
[
y1 · · · yn

]
∈ R1×n (1.62)
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In the end, the estimated function evaluated on a test regressor x∗ ∈ X is

ŷ∗ = γ (x∗)> ϑ̂ (1.63)

= γ (x∗)>
(
ΓΓ> + τInϑ

)−1
Γy> (1.64)

This classical formulation is called primal perspective, but it is possible to solve this opti-
mization problem in another way that is called dual perspective. This formulation is obtained
by noting that the optimization problem (1.58) can be written as

J (e,ϑ) =

n∑
i=1

e2i + τ

nϑ∑
j=1

ϑ2j (1.65)

s.t yi =

nϑ∑
j=1

ϑjγj (xi) + ei i = 1, . . . , n (1.66)

where e = [e1, . . . , en] ∈ R1×n. This is a constrained optimization problem that can be
solved using the Lagrange multipliers [16]. In particular, we obtain the new cost function

J∗ (e,ϑ,α) =

n∑
i=1

e2i + τ

nϑ∑
j=1

ϑ2j +

n∑
i=1

αi

yi − nϑ∑
j=1

ϑjγj (xi)− ei

 (1.67)

where α = [α1, . . . , αn]> ∈ Rn×1 are the Lagrange multipliers. Now, the optimality con-
ditions are 

∂

∂eh
J∗ (e,ϑ,α) = 0 h = 1, . . . , n

∂

∂αh
J∗ (e,ϑ,α) = 0 h = 1, . . . , n

∂

∂ϑh
J∗ (e,ϑ,α) = 0 h = 1, . . . , nϑ

(1.68)

by solving the partial derivatives, we obtain:
αh

2
= eh h = 1, . . . , n

yh =
∑nϑ

j=1 ϑjγj (xh) + eh h = 1, . . . , n

ϑh =
1

2τ

∑n
i=1 αiγh (xi) h = 1, . . . , nϑ

(1.69)

Now, it is possible to rewrite these three equations with only the Lagrange multipliers as
variables. In particular, we can take the second equation and substitute eh with the de�ni-
tion of the �rst equation and ϑj with the de�nition of the third equation.

yi =

nϑ∑
j=1

(
1

2τ

n∑
h=1

αhγj (xh)

)
γj (xi) +

αi

2
i = 1, . . . , n (1.70)

now, with some mathematical steps, we can write

2yi =
1

τ

n∑
h=1

αh

nϑ∑
j=1

γj (xh) γj (xi) + αi i = 1, . . . , n. (1.71)
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This is a linear system with n equations and n unknown variables (the Lagrange multipli-
ers). In matrix form, this system can be written as(

Γ>Γ + τIn

)
α̂ = 2τy> (1.72)

α̂ = 2τ
(
Γ>Γ + τIn

)−1
y> (1.73)

from α we can compute the coe�cients ϑ̂ by using the third equation of (1.69). Therefore

ϑ̂ =
1

2τ
Γα̂ (1.74)

=
1

��2τ
Γ ·��2τ

(
Γ>Γ + τIn

)−1
y> (1.75)

= Γ
(
Γ>Γ + τIn

)−1
y> (1.76)

It can be shown that the parameters obtained in this way are equals to the one obtained
with the primal perspective. Therefore, the evaluation of the estimated function on a test
regressor x∗ ∈ X

ŷ∗ = γ (x∗)> ϑ̂ (1.77)

= γ (x∗)> Γ
(
Γ>Γ + τIn

)−1
y> (1.78)

Remark 1.6. In the dual perspective, the number of unknown parameters to compute is
equal to n, while in the primal formulation the number of unknown is nϑ. Therefore, when
n ≥ nϑ using the primal formulation is more convenient, vice versa when n < nϑ the dual
formulation decreases the dimension of the linear system to solve.

Now, we can see that the (i, j) element of the matrixK = Γ>Γ ∈ Rn×n is

Ki,j =

nϑ∑
h=1

γh (xi) γh (xj) (1.79)

= γ (xi)
> γ (xj) (1.80)

= k (xi,xj) (1.81)

for construction, the function k : X ×X → R is symmetric and positive semi-de�nite. For
this reason, k is a valid kernel and therefore it de�nes a RKHSH. Since we known that

k (xi,xj) =

nϑ∑
h=1

γh (xi) γh (xj) , (1.82)

then this kernel is degenerate and it has dimension nϑ.

Remark 1.7. It is possible to note that, to compute ŷ∗, it is only necessary to know how to
compute the kernel k. In particular, we can write

ŷ∗ = γ (x∗)> Γ
(
Γ>Γ + τIn

)−1
y> (1.83)

= k∗ (x∗)> (K + τIn)−1 y> (1.84)
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where

k∗ (x∗)> = γ (x∗)> Γ (1.85)

=
[
γ (x∗)> γ (x1) · · · γ (x∗)> γ (xn)

]
(1.86)

=
[
k (x∗,x1) · · · k (x∗,xn)

]
∈ R1×n (1.87)

The kernel trick consist of substituting this degenerate kernel with a non-degenerate one.
This is possible because we do not actually need to compute the features map function, as
shown in Remark 1.7.

Thanks to the Mercer theorem (see Theorem 1.4), we known that

k (xi,xj) =
∞∑
h=1

ψh (xi)ψh (xj) (1.88)

and therefore, the sum (1.82) is expanded to, potentially, in�nity. This results in a linear
regression with an in�nite amount of features where the hypothesis space (1.56), de�ned as
the span of the features, is the RKHS associated with the kernel.

For this reason, using the kernel trick allows extending the theory behind linear regression
to non-linear models where the hypothesis space is given by an RKHS that, as shown in
Section 1.1, can contain a large variety of non-linear functions. Furthermore, it is possible
to tune the kernel in such a way that the hypothesis space contains the functions that are
more suitable in the application at hand. Therefore, it provides a straightforward way to
incorporate prior knowledge in the regression algorithm.

1.2.2 Tikhonov regularization
The kernel trick is an intuitive way to understand how the RKHS can be used in learning
theory. This result can be formalized more directly, called Tikhonov regularization [111, 131],
that provides additional insight on the behavior of the method.

Consider the dataset
D = {(xi, yi) |1 ≤ i ≤ n} , (1.89)

sampled from the generic probabilistic model

yi = ğ (xi) + ei (1.90)

where ei are IID noises with variance β2,xi ∈ X ⊆ Rnx×1 are the regressors, yi ∈ R denote
the measurements and ğ is an unknown function. To make the notation more compact, we
de�ne the vectors:

y =
[
y1 · · · yn

]
∈ R1×n, (1.91)

ğ =
[
ğ (x1) · · · ğ (xn)

]
∈ R1×n, (1.92)

e =
[
e1 · · · en

]
∈ R1×n (1.93)

and rewrite (1.90) as:
y = ğ + e, (1.94)
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In order to estimate the function ğ, instead of an hypothesis space composed by a span of
a �nite number of features as in (1.56), we suppose that the function ğ belongs to an RKHS
H with kernel k. Using the normal least square method, we obtain the estimation

ĝ = arg min
g∈H

{
n∑
i=1

(yi − g (xi))
2

}
(1.95)

= arg min
g∈H

{
‖y − g‖22

}
(1.96)

In practice, this cost function cannot be used because the hypothesis space H can be very
large, potentially in�nite dimensional. This cause the estimate ĝ to heavily over�t the train-
ing dataset (1.89). The natural solution of this problem is the regularization, but, in this case,
we have to impose a penalty on the function itself because the function is not parametrized
with a �nite number of parameters.

SinceH is an Hilbert space, it is equipped with a norm whose meaning depends on the type
of space. For the Mercer theorem (see Theorem 1.4), we know that this norm is larger for
functions that are similar to the eigenfunctions associated a with small eigenvalue. There-
fore, it is possible to tune the kernel to obtain a norm that is large in correspondence of
functions with not-wanted behavior. For example, in Example 1.6 the Gaussian kernel de-
�nes a norm that is larger for functions with signi�cant components at higher frequencies.

For this reason, it is possible to regularize the cost function with the norm of the RKHS.

ĝ = arg min
g∈H

{
‖y − g‖22 + τ ‖g‖2H

}
(1.97)

This is, potentially, an in�nite dimensional optimization problem that is not straightforward
to solve. However, it is known that the solution of this optimization problem exists and it
is unique [130].

Using the properties of the RKHSH, it is possible to prove the following important theorem.

Theorem 1.7 (Representer theorem [40, 111]). Let ĝ be as in (1.97). Then, there exists c ∈
Rn×1 such that

ĝ =
n∑
i=1

cirxi (1.98)

where rx ∈ H is the representer of x ∈ X , as de�ned in De�nition 1.2.

Thanks to this theorem, the optimization problem (1.97) boils down to a �nite dimensional
optimization problem where we need to estimate only the vector ĉ ∈ Rn×1.

Remark 1.8. The representer theorem utilizes the properties of the RKHS to �nd a �nite
dimensional subspace ofH that contains the function that minimize the cost function. Fur-
thermore, it provides a base of this subspace {rx1 , . . . , rxn}.

Thank to this theorem, the norm becomes

‖g‖2H =

∥∥∥∥∥
n∑
i=1

cirxi

∥∥∥∥∥
2

H

(1.99)

=

〈
n∑
i=1

cirxi ,

n∑
j=1

cjrxj

〉
H

(1.100)
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=

n∑
i=1

n∑
j=1

cicj
〈
rxi , rxj

〉
H (1.101)

=
n∑
i=1

n∑
j=1

cicjk (xi,xj) (1.102)

= c>Kc (1.103)

where K ∈ Rn×n is a matrix whose element (i, j) is k (xi,xj) and it is, usually, called
Kernel matrix. Since

g =
[
g (x1) · · · g (xn)

]
(1.104)

=
[ ∑n

i=1 cirxi (x1) · · ·
∑n

i=1 cirxi (xn)
]

(1.105)

=
[ ∑n

i=1 cik (xi,x1) · · ·
∑n

i=1 cik (xi,x1)
]

(1.106)

=
[
c>Ken,1 · · · c>Ken,n

]
(1.107)

= c>K
[
en,1 · · · en,n

]
(1.108)

= c>KIn (1.109)
= c>K (1.110)

the loss term becomes
‖y − g‖22 =

∥∥∥y − c>K∥∥∥2
2

(1.111)

therefore, the optimization problem becomes:

ĝ =

n∑
i=1

ĉirxi (1.112)

ĉ =
[
c1 · · · cn

]>
= arg min

c∈Rn×1

{∥∥∥y − c>K∥∥∥2
2

+ τc>Kc

}
(1.113)

This is a normal quadratic optimization problem that can be treated analytically. In partic-
ular, it is straightforward to show that the coe�cients vector ĉ ∈ Rn×1 is the solution of
the following linear system

K (K + τIn) ĉ = Ky> (1.114)

If the kernel is non-degenerate, then the matrixK is positive de�nite and therefore invert-
ible. In this case, we can simplify the matrixK on both sides

(K + τIn) ĉ = y> (1.115)
ĉ = (K + τIn)−1 y> (1.116)

Then, given a test regressor x∗, the output estimation is

ŷ∗ = ĝ (x∗) =

n∑
i=1

ĉirxi (x∗) (1.117)

=
n∑
i=1

ĉi 〈rxi , rx∗〉H (1.118)
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=

n∑
i=1

ĉik (xi,x
∗) (1.119)

= k∗ (x∗)> ĉ (1.120)
= k∗ (x∗)> (K + τIn)−1 y> (1.121)

Here, it is possible to note that this formulation is equivalent to the one obtained with the
kernel trick, see equation (1.84).

However, this perspective provides more insight into the method. First of all, we know that
the identi�ed function is unique and it exists [130]. Additionally, the Mercer theorem (see
Theorem 1.4) sheds some light on what the regularization achieves. In particular, we know
that the Tikhonov regularizer penalizes functions that are similar to the eigenfunctions of
the kernel that are associated with a small eigenvalue, as explained before.

1.3 Gaussian process regression
It is well known that the ridge regression has a Bayesian perspective where, instead of
assuming that the parameters vector ϑ is an element of a hypothesis set, it is assumed that
ϑ is a random variable with a certain distribution called prior. In particular, considering the
following probabilistic model

p (y |X,ϑ) = N
(
y>
∣∣∣Γ>ϑ, β2In) Likelihood distribution (1.122)

p (ϑ |X ) = N
(
ϑ
∣∣0nϑ×1, η2Inϑ ) Prior distribution (1.123)

where Γ ∈ Rnϑ×n,ϑ ∈ Rnϑ×1, y ∈ R1×n are de�ned as in Section 1.2.1, β and η are strictly
positive real numbers and

X =
[
x1 · · · xn

]
∈ Rnx×n. (1.124)

Using the conjugacy properties of the Normal distribution [17], it is straightforward to show
that the posterior distribution is

p (ϑ |X,y ) =
p (y |X,ϑ) · p (ϑ |X )

p (y |X )
(1.125)

= N
(
ϑ
∣∣∣ϑ̂,Σϑ|y

)
(1.126)

where

ϑ̂ =

(
ΓΓ> +

β2

η2
Inϑ

)−1
Γy> (1.127)

Σϑ|y = β2

(
ΓΓ> +

β2

η2
Inϑ

)−1
(1.128)



24 Chapter 1. Kernel-based learning methods for static models

Additionally, given a test regressor x∗, the estimated output is a random variable whose
distribution is called prediction distribution. In particular, we have:

p (y∗ |X,y,x∗ ) =

∫
p (y∗ |x∗,ϑ) p (ϑ |X,y ) dϑ (1.129)

= N
(
y∗
∣∣ŷ∗, σ̂2y∗ ) (1.130)

where

ŷ∗ = γ (x∗)> ϑ̂ (1.131)
σ̂2y∗ = β2 + γ (x∗)>Σϑ|yγ (x∗) (1.132)

Here, it is possible to see that the mean of the posterior correspond to the ridge regression
estimation, see equation (1.60), with τ = β2

η2
. For this reason, this approach can be con-

sidered as a di�erent way to reach the same method as the ridge regression. However, it
provides new insight on the meaning of the parameter τ and it provides the variance of the
estimation that can be used to de�ne con�dence interval on the estimation.

1.3.1 Gaussian process definition
In the previous sections, we saw that the kernel regression can be seen as an extension of
the ridge regression to the in�nite-dimensional case. Therefore, it is legit to ask if there
exists a Bayesian perspective even for the kernel regression. The answer is positive and it
is provided by the so-called Gaussian process regression [104].

In the kernel methods, the unknown is not a �nite-dimensional vector, but a function.
Therefore, it is necessary to use a statistical distribution of functions de�ned on the RKHS
H. This distribution is called Gaussian process and it is de�ned as follow.

De�nition 1.5 (Gaussian process (GP)). A function u : X → R is distributed according to a
Gaussian process GP with mean ρ : X → R and covariance k : X ×X → R if and only if
for every �nite subset X = {x1, · · · , xn} of X , we have

u (x1)
...

u (xm)

 ∼ N


ρ (x1)

...

ρ (xm)

 ,

k (x1, x1) · · · k (xm, xa)

...
. . .

...

k (x1, xm) · · · k (xm, xm)


 (1.133)

and it is indicated as
u ∼ GP (ρ, k) (1.134)

Remark 1.9. Since the variance of the normal distribution has to be symmetric and positive
semi-de�nite matrix, the covariance function k has to a valid kernel. For this reason, the
various kernel examples provided in Section 1.1 are all valid covariance functions for a
Gaussian process.
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Example 1.9: Gaussian process with Gaussian variance

To better understand the behavior of the functions sampled from a Gaussian process,
consider the case where the covariance function is a Gaussian kernel.

k : R× R→ R (1.135)

(x, y)→ e−
(x−y)2
σ2 (1.136)

then in Figure 1.3, it is possible to see some functions extracted by this distribution
with three di�erent value of σ and ρ (x) = 0, ∀x ∈ R. Here, it is possible to note the
e�ect of σ on the distribution. When σ is small, the function k tends to become sim-
ilar to the Kronecker delta [88] and therefore the covariance matrix becomes similar
to an identity matrix. This generates high varying functions because the samples are
uncorrelated with each other. Vice versa, with larger σ the covariance matrix tends
to become full of ones and therefore the samples are all heavily correlated with each
other. For this reason, the sampled functions become smoother.
In Figure 1.4, it is possible to see the e�ect of di�erent mean functions ρ on the
distribution. In particular, we consider the following cases

ρ1 (x) = 10 (1.137)
ρ2 (x) = 2 sin (3x) (1.138)
ρ3 (x) = (x− 2)2 (1.139)

From these plots, it is clear that the mean function moves the “baseline” of the sam-
pled functions.
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Figure 1.3: Plot of 10 functions taken from a Gaussian process with a
Gaussian kernel and 0 mean with di�erent values of σ. From left to right:

σ = 0.1, σ = 1 and σ = 5.

Remark 1.10. From Theorem 1.5, we know that multiplying a kernel with a positive scalar
allows de�ning a new valid kernel. If this kernel is used as a covariance function of a
Gaussian process the e�ect is to increase the RMS of the sampled functions.
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Figure 1.4: Plot of 10 functions taken from a Gaussian process (colored
lines) with a Gaussian kernel with σ = 1 and di�erent mean function ρ.
The black line is the mean function. From left to right: ρ = ρ1, ρ = ρ2 and

ρ = ρ3.

1.3.2 Bayesian perspective of the Tikhonov regression
With the knowledge of a Gaussian process, it is possible to �nd the Bayesian perspec-
tive of the Tikhonov regularization presented in Section 1.2. Recalling the probabilistic
model (1.90), we can de�ne the likelihood distribution

p (y |X, g ) = N
(
y>
∣∣∣g>, β2In) (1.140)

that can be complemented with a Gaussian process prior on the unknown function

g ∼ GP (0X , k) (1.141)

where 0X is the function that returns 0 for every regressor inside X and k : X × X → R
is a valid kernel, i.e. its symmetric and positive semi-de�nite.

Now, let x∗ ∈ X be a new regressor, g∗ = g (x∗) ∈ R and y∗ be the unknown measure-
ment associated with the regressor x∗. Assuming that this new data point y∗ is sampled
independently from the training dataset y, we have

p (y, y∗ |g, g∗,X,x∗ ) = N

 y>
y∗

 ∣∣∣∣∣∣
 g

g∗

 ,
 β2In 0

0 β2

 (1.142)

Then we can note that, for the de�nition of Gaussian process, we have

p (g, g∗ |X,x∗ ) = N

 g>
g∗

 ∣∣∣∣∣∣
 0n×1

0

 ,
 K k∗ (x∗)

k∗ (x∗)> k (x∗,x∗)

 (1.143)

where K ∈ Rn×n is the kernel matrix and k∗ (x∗) = [k (x∗,x1) , . . . , k (x∗,xn)]> ∈
Rn×1.
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Using these two expressions and the Normal distribution conjugacy properties [17], it is
possible to compute the marginal likelihood

p (y, y∗ |X,x∗ ) =

∫
p (y, y∗ |g, g∗,X,x∗ ) p (g, g∗ |X,x∗ ) dgdg∗ (1.144)

= N

 y>
y∗

 ∣∣∣∣∣∣
 0n×1

0

 ,
 K + β2In k∗ (x∗)

k∗ (x∗)> k (x∗,x∗) + β2


(1.145)

In the end, we can compute the prediction distribution as

p (y∗ |X,x∗,y ) =
p (y, y∗ |X,x∗ )

p (y |X,x∗ )
(1.146)

= N
(
y∗|ŷ∗, σ̂2y∗

)
(1.147)

where

ŷ∗ = k∗ (x∗)>
(
K + β2In

)−1
y> (1.148)

σ̂2y∗ = β2 + k (x∗,x∗)− k∗ (x∗)>
(
K + β2In

)−1
k∗ (x∗) (1.149)

Here, we can note that the expected value of the predictive distribution is equal to the one
obtained using the Tikhonov regularization, see equation (1.121), or the kernel trick, see
equation (1.77), where τ = β2.

This new perspective on the method provides two new important insight

• The regularization strength τ corresponds to the measurement noise variance. This
is intuitive because larger noises correspond to less reliable data and therefore the
regularization is more important.

• It provides the variance of the estimation and therefore a way to compute the con�-
dence interval.

To better understand the usefulness of this new interpretation, let us consider the following
example.

Example 1.10: Gaussian process application

Consider the following function

ğ : R→ R (1.150)
x→ sin (2x) + 4x cos (x) (1.151)

and the following small noiseless dataset

x =
[

5.96 7.37 3.62 5.60 9.04
]
∈ R1×5 (1.152)

y = ğ ∈ R1×5 (1.153)
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Now, we can impose a Gaussian process prior on the unknown function, g ∼
GP (0, k), where k is

k (x, y) = e−(x−y)
2

. (1.154)

The posterior, obtained as shown before, is shown in Figure 1.5. In this graph, as ex-
pected, we can see that the uncertainty of the estimation increases with the distance
to the available regressors. Furthermore, since the dataset used is noiseless, in the
proximity of the regressors the uncertainty is close to 0. If we add a small amount
of noise (β2 = 0.05), we obtain a similar result, as shown in Figure 1.6, where the
major di�erence is the presence of some uncertainty even in the proximity of the
regressors because there is some uncertainty due to the measurement noise.
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Figure 1.5: Plot of the posterior distribution (blue line and light-blue col-
ored bands) of a Gaussian process regression without noise in comparison
with the true function (green line). The points (x, y) ∈ D are shown in

green circles.

1.4 Manifold regularization and semi-supervised
learning

In the previous sections, the Tikhonov regularization is explored in three di�erent per-
spectives (kernel trick, Tikhonov regularization, and Gaussian process regression), but it is
possible to de�ne other types of regularization as well. In particular, we can de�ne other
penalty terms based on some di�erent unwanted behavior of the estimated function. This
can be useful sometimes because in the standard Tikhonov regularization the kernel de�nes
both the hypothesis space and the properties of the penalty term, as shown in the sections
before. Sometimes, it is desirable to use a certain space H, but not the squared norm ‖·‖2H
as a penalty term.
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Figure 1.6: Plot of the posterior distribution (blue line and light-blue col-
ored bands) of a Gaussian process regression with a small noise (β2 = 0.05)
in comparison with the true function (green line). The points (x, y) ∈ D

are shown in green circles.

In this section, we will delve into one possible way to impose a di�erent kind of penalization
term that is based on the assumption that the regressor distribution holds some information
on the system under exam.

1.4.1 Manifold regularization
In the standard learning paradigm the dataset is taken in the following way:

1. the regressors are sampled from a certain distribution:

xi ∼ px i = 1, . . . , n (1.155)

2. the outputs measurements are sampled from a certain conditional distribution px|y

yi ∼ py|x=xi i = 1, . . . , n (1.156)

This dataset is then used to �nd a good approximation of the conditional distribution py|x=x∗

where x∗ ∈ X is a generic regressor. For this reason, usually, the marginal distribution px
is ignored because it does not contain any useful information about the conditional distri-
bution py|x=x∗ . However, in some cases, this is not true and it is possible to extract some
useful information from the marginal distribution px. To understand this concept, consider
the following example.
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Example 1.11: Example of the usefulness of the marginal distribution px

Consider a classi�cation problem with a dataset that contains only one point for
each of the two di�erent classes. Without additional information, the most intuitive
classi�er is the linear classi�er represented in the left graph of Figure 1.7.
However, in the right part, we can see that, considering the distribution of the re-
gressors px, the most intuitive classi�er is di�erent. This is because, in the second
plot, we consider the distance alongside the intrinsic geometry of the distribution.
In other words, to �nd the classi�er, we have used the assumption that the labels do
not change along the same regions of the regressors distribution.

Figure 1.7: Plot of the most intuitive classi�ers (black lines) with the two
points of Example 1.11. In the left graph, the knowledge of the regressors
distribution is unknown. Instead, in the right graph, the background color
represents the pdf regressors distribution (yellow corresponds to a higher

pdf values) and the most intuitive classi�er is di�erent.

In this example, we have shown that the knowledge about the regressors distribution px
can be useful in order to learn the conditional. However, this was possible only because we
have introduced an assumption on the conditional distribution py|x=x∗ . For this reason, it
is necessary to consider the following assumption.

Assumption 1.1. The conditional distribution py|x=x∗ varies smoothly alongside x∗ and its
intrinsic geometry px.

In the regression case treated in previous sections, the conditional distribution py|x=x∗ is
de�ned according to the simple model (see Equation (1.90))

y∗ = ğ (x∗) + e∗ (1.157)

where ğ : X → R is the function that we want to identify and e∗ is a stochastic additive
noise that is assumed to be independent from the regressor x∗. Therefore, the variance
of the conditional distribution py|x=x∗ is equal to the variance of e∗ that does not change
with x∗. However, this is not the case for the mean because it is equal to ğ (x∗). For this
reason, Assumption 1.1 can be seen as a condition on the unknown function ğ. In particular,
the assumption is respected if and only if the function ğ behaves smoothly alongside the
intrinsic geometry of px.

For this reason, given a generic function g : X → R, we can de�ne a new term ‖g‖2I
that is higher when the function g is not smooth alongside px. This term, called intrinsic
regularizer, can be added to the Tikhonov cost function (1.97) as a second penalty term to
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constrain the identi�ed function ĝ to respect, to some degree, Assumption 1.1. Therefore,
the cost function becomes:

ĝ = arg min
g∈H

{
‖y − g‖22 + τ ‖g‖2H + µ ‖g‖2I

}
(1.158)

where µ ∈ R+ is the strength of the new regularization term.

The choice of the intrinsic regularizer is not trivial, but there are some valid choices in the
literature [11]. However, in this thesis, the focus will be on one of these possible choices.
Let us assume that the support X of px is a compact submanifold, then a possible intrinsic
regularizer is

‖g‖2I =

∫
X
‖∇g (x)‖2 px (x) dx =

∫
X
g (x)∆g (x) px (x) dx (1.159)

where∇g is the gradient vector of g,∆ is the Laplace-Beltrami operator along the manifold
X and, with a slight abuse of notation, px (x) is the pdf of the regressors distribution evalu-
ated onx. This term penalizes functions with a high gradient with a weight that depends on
the pdf px. Therefore, it penalizes functions that have high variation in the high probability
regions of the regressors space, but it allows large swings of the function in the other re-
gions. In other words, this intrinsic regularizer promotes functions that are smooth locally
in the high-density regions of the regressors space even if they are not smooth globally in
all the domain X .

Remark 1.11. Since this type of intrinsic regularizer is de�ned on a manifold, this method
is often called manifold regularization.

Unfortunately, this term is not computable in practice, because the distribution px is usually
unknown. For this reason, it is necessary to �nd a way to approximate it by using the
available regressors.

Remark 1.12. Since ‖g‖2I depends only on px, only the regressors xi ∼ px holds some
useful information that can be exploited for the approximation. Therefore, for this purpose,
the measurements of the output yi are useless.

In order to approximate this regularizer, it is necessary to de�ne the regressors graph.

De�nition 1.6 (Regressors graph). Given a �nite set of regressors D = {x1, . . . , xn} ⊂ X ,
a regressors graph is a weighted graph with the following properties:

• each vertex of the graph is associated with a regressor of the set D;

• the weight wi,j ≥ 0 of the edge between the vertices i and j represents the degree of
proximity between xi and xj in the intrinsic geometry of px;

• if the edge between the vertices i and j is missing then xi and xj are considered not
neighbors in the intrinsic geometry of px.

Remark 1.13. How to create such graph is left for the next subsection (see Section 1.4.2).

Now, it can be shown [35, 58] that, given a datasetD = {x1, . . . , xn} and a regressors graph
with certain properties (see Section 1.4.2), the regularization term (1.159) can be approxi-
mated as

‖g‖2I '
n∑
i=1

n∑
j=1

wi,j (g (xi)− g (xj))
2 = gLg> (1.160)
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where g = [g (xi) , . . . , g (xj)] and L ∈ Rn×n is the Laplacian of a regressors graph i.e.

L = D −W (1.161)

whereW ∈ Rn×n is the weighted adjacency matrix of the regressors graph, i.e. the element
(i, j) of W is the weight wi,j , and D ∈ Rn×n is a diagonal matrix whose i-th diagonal
element is

di,i =

n∑
j=1

wi,j (1.162)

Example 1.12: Importance of the right graph selection

De�nition 1.6 does not specify how to construct such a graph and what “degree of
proximity” actually means. These details are left for the Section 1.4.2, however, it is
possible to show the e�ect of the graph selection on the intrinsic regularizer on a
toy example.
Consider the following small regressors set

D = {−3,−2,−1, 0, 1, 2, 3} ⊆ R (1.163)

and the two regressors graphs shown in Figure 1.8, where, for simplicity, the weights
are 1 or 0. The �rst graph connects the regressors with their respective neighbors,
while the second one connects each regressor with 0 and with the one with the
opposite sign. The Laplacian matrix de�ned using the �rst graph is L1 ∈ Rn×n and
the one de�ned using the second graph is L2 ∈ Rn×n
Now, consider the two functions shown in Figure 1.9. The �rst function y1 is smooth
along the real axis, while the second one y2 has an erratic behavior.
The value of the intrinsic regularizer of each function evaluated on each graph is

First graph: y1L1y
>
1 = 70 y2L1y

>
2 = 390 (1.164)

Second graph: y1L2y
>
1 = 588 y2L2y

>
2 = 196 (1.165)

where

y1 = [y1 (−3) , y1 (−2) , y1 (−1) , y1 (0) , y1 (1) , y1 (2) , y1 (3)] ∈ R1×7 (1.166)
y2 = [y2 (−3) , y2 (−2) , y2 (−1) , y2 (0) , y2 (1) , y2 (2) , y2 (3)] ∈ R1×7 (1.167)

According to the �rst graph, the smoothest function is y1, while according to the
second on y2 is smoother. This is because the graph changes what regressor is con-
sidered close to a second regressor and therefore what function is considered smooth.
For this reason, the selection of the right graph is really important for the de�nition
of the regularizer.

The matrix L is the Laplacian of the regressors graph and, for its construction, is always
symmetric and positive semi-de�nite [34]. In particular, the number of 0 eigenvalues is
equal to the number of completely connected part of the regressors graph [34]. For this
reason, there is always at least an eigenvalue equal to 0 and therefore the matrixL is always
singular.
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Figure 1.8: Plot of the two regressors graphs used in Example 1.12. If the
edge is not drawn then its associated weight is 0, otherwise it is 1.
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Figure 1.9: Plot of the two functions used in Example 1.12.

Using this approximation of the intrinsic regularizer, the cost function (1.158) becomes

ĝ = arg min
g∈H

{
‖y − g‖22 + τ ‖g‖2H + µgLg>

}
(1.168)

For this cost function, the classic Representer theorem, reported as Theorem 1.7, cannot be
applied. However, it is possible to show that the Representer theorem can be extended to
this case [11, 40, 111].

Theorem1.8 (Representer Theorem with Laplacian intrinsic regularizer). Let ĝ be as in (1.168).
Then, there exists c ∈ Rn×1 such that

ĝ =
n∑
i=1

cirxi (1.169)

where rx ∈ H is the representer of x ∈ X , as de�ned in De�nition 1.2.

Therefore, the estimated function ĝ can be written in the same way as for the classical
Tikhonov regression explained in the previous sections. In these settings, since g = c>K
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(as shown in equation (1.110)) the intrinsic regularizer becomes

gLg> = c>KLKc (1.170)

therefore the optimization problem can be rewritten as

ĝ =
n∑
i=1

ĉirxi (1.171)

ĉ =
[
ĉ1 · · · ĉn

]>
= arg min

c∈Rn×1

{∥∥∥y − c>K∥∥∥2
2

+ τc>Kc+ µc>KLKc

}
(1.172)

This is a quadratic cost function whose minimizer can be found analytically. In particular,
we obtain that the minimizer can be found by solving the linear system:

K (K + τIn + µLK) ĉ = Ky> (1.173)

If the kernel is non-degenerate, then the matrixK is positive de�nite and therefore invert-
ible. In this case, we can simplify the matrixK on both sides

(K + τIn + µLK) ĉ = y> (1.174)
ĉ = (K + τIn + µLK)−1 y> (1.175)

Remark 1.14. Even with the new regularization term, the classical Tikhonov regularizer
cannot be removed because, for its construction, the linear system 1.175 is ill-posed unless
τ is large [11]. This problem will be tackled in Section 3.4 as one of the new contributions
of this thesis.

1.4.2 Graph selection methods
Let us now focus on the selection of the right regressors graph. In the literature, there are
a lot of di�erent ways to select this graph. In particular, there are two schools of thought:

• the �rst one employs complete graph with di�erent edge weights [10, 13, 14, 36];

• the second one uses non-complete graph with all the edges with the same weight [15,
23, 49];

For both types of graph, there are theoretical results that show that the estimator gLg>,
explained in equation (1.160), converges to the desired regularizer (1.159) for a large amount
of data.

In this section some basic methods to construct the graph are reported, however for more
details refer to the literature, among others [10, 13, 14, 15, 23, 36, 49].

In [10, 11], they propose to use a complete graph with gaussian weights

wi,j = e−
dist(xi,xj)2

σ (1.176)

where σ ∈ R+ and dist (xi,xj) is a valid distance between two regressors. An evolution
of this method is presented in [13, 14] where the weights are computed with more complex
formulations.
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In the second school of thought, the two basic techniques are: the �xed ε-ball and the k-NN.
In the former method, a regressor xi is connected to all the regressors such that

dist (xi,xj)
2 ≤ ε (1.177)

where ε ∈ R+. Instead, the k-NN, that stands for k-Nearest Neighbors, connect the regres-
sor xi with the closest k ∈ N \ {0} other regressors in D according to some distance. The
�xed ε-ball works best when the points are uniformly distributed in the manifold, while
the k-NN tends to adapt to di�erent points densities. In the literature, there are also some
evolutions of these methods [15].

1.4.3 Semi-supervised identification
Classical statistical learning regression methods can be divided into two categories based
on the type of data available

Supervised methods where the available dataset contains an output measurement for
each regressor, i.e.

D = {(xi, yi) |i = 1, . . . , n} (1.178)

where n is the number of available data and yi is the output measurement associated
with the regressor xi.

Semi-supervised methods where not all the regressors in the available dataset have an
associated measurement. In other words, there are two di�erent datasets that can be
used

Ds = {(xi, yi) |i = 1, . . . , ns} Supervised dataset (1.179)
Du = {xi|i = ns + 1, . . . , n = ns + nu} Unsupervised dataset (1.180)

the �rst one is a normal dataset that contains the regressors and their associated
output measurements, while the second one contains only the regressors.

Until now, in this documents, the focus was on the supervised regression using kernel
methods, however, in this section, a brief introduction on how to use kernel methods to
do semi-supervised regression is presented. The intuition comes from Remark 1.12 where
it is explained that only the regressors are needed to approximate the intrinsic regularizer.
For this reason, the second dataset can be used to improve the estimation of the regularizer
by providing additional information on the intrinsic geometry of the regressors. Therefore,
in order to apply the semi-supervised regression in this way, it is necessary that Assump-
tion 1.1 holds.

To enter in more details, let us de�ne the following vectors

gs =
[
g (x1) · · · g (xns)

]
∈ R1×ns (1.181)

gsu =
[
g (x1) · · · g (xns) g (xns+1) · · · g (xns+nu)

]
∈ R1×n (1.182)

ys =
[
y1 · · · yns

]
∈ R1×ns (1.183)

where the regressors and the output are taken from the datasets (1.179) and (1.180).

Now, to better approximate the intrinsic geometry, we can de�ne a new extended regressors
graph that uses the regressors from both datasets. In this way, following the reasoning of
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the previous section, the intrinsic regularizer can be approximated as

‖g‖2I =

∫
X
‖∇g (x)‖ px (x) dx ' gsuLg>su (1.184)

where L ∈ Rn×n is the Laplacian matrix of the extended regressors graph.

Remark 1.15. Since we are using more regressors this approximation is more accurate
than the one that can be obtained using only the supervised regressors.

Using this improved approximation the cost function (1.168) that use both type of regular-
ization becomes

.ĝ = arg min
g∈H

{
‖ys − gs‖22 + τ ‖g‖2H + µgsuLg

>
su

}
(1.185)

In order to compute ĝ, we need to generalize the representer theorem to this new cost
function. This new theorem can be found in [11].

Theorem 1.9 (Representer Theorem for semi-supervised regressions [11]). Let ĝ be as
in (1.185). Then, exists c ∈ Rn×1 such that

ĝ =
n∑
i=1

cirxi (1.186)

where rx ∈ H is the representer of x ∈ X , as de�ned in De�nition 1.2.

This theorem is a generalization of the other Representer theorems, see Theorem 1.7 and
Theorem 1.8.

In this settings, the optimization problem boils down to a �nite dimensional one. In partic-
ular, following the same reasoning used for the supervised case, we obtain

ĝ =

nu+ns∑
i=1

ĉirxi (1.187)

ĉ = arg min
c∈Rn×1

{∥∥∥y − c>PK∥∥∥2
2

+ τc>Kc+ µc>KLKc

}
(1.188)

whereK ∈ Rn×n is the kernel matrix computed using all the regressors, from both datasets,
and

y =
[
ys 01×nu

]
∈ R1×n (1.189)

P =

 Ins 0ns×nu

0nu×ns 0nu×nu

 ∈ Rn×n (1.190)

is a matrix that selects the part of K that is needed to compute the loss term of the cost
function. This is a quadratic optimization problem whose minimizer can be computed as a
solution of the linear system

K (PK + τIn + µLK) ĉ = Ky> (1.191)
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as usual, ifK is invertible, we can simplifyK on both side of the equation

(PK + τIn + µLK) ĉ = y> (1.192)
ĉ = (PK + τIn + µLK)−1 y> (1.193)

This linear system is often ill-conditioned because:

• the term PK is a matrix with nu columns equal to 0n×1 and therefore is rank-
de�cient;

• the regularizer LK is also rank de�cient because L has at least one null eigen-
value [34].

therefore, the second term is the only full-rank matrix between the three of them. for this
reason, τ has to be large enough to make this system well-conditioned and it cannot be
omitted. A possible approach to deal with the numerical problems, that are caused by the
ill-conditioning of this matrix, is proposed in Section 3.4 as a new contribution of this thesis.

1.5 Hyper-parameters selection
In this chapter, we have discussed how to identify a non-linear function given a set of data
using kernel methods in both supervised and semi-supervised settings. These methods re-
quire the selection of some hyper-parameters:

• the Tikhonov regularization strength τ ;

• the kernel hyper-parameters ψ that determines the hypothesis space and properties
of the Tikhonov regularizer.

Furthermore, if the manifold regularization is employed, it is also necessary to tune

• the manifold regularization strength µ;

• the eventual hyper-parameters ρ needed to construct the regressors graph.

In the remainder of this section the vector that contains all the hyper-parameters is called
ζ, i.e.

ζ =
[
µ τ ψ ρ

]>
∈ Rnζ×1 (1.194)

where nζ is the number of hyper-parameters.

The number of hyper-parameters nζ can become very large in particular when a complex
combined kernel is used. In fact, recalling Theorem 1.5 and Theorem 1.6, it is possible to
combine a lot of di�erent kernels in order to shape the RKHS to our needs.

For example, in [104, Section 5.4] they try to model the Carbon dioxide (CO2) concentration
as a function of time using the dataset [60]. To do so, they proposed a combined kernel with
9 di�erent hyper-parameters. Another important example, that will be discussed in more
details in Section 2.3, is the kernel proposed in [97] for non-linear system identi�cation.
This kernel has 10 di�erent hyper-parameters.

For this reason, the tuning of the hyper-parameters is not trivial. The more convenient
way to solve this problem is to use the prior knowledge available on the system. In par-
ticular, these hyper-parameters impact the optimization procedure in an interpretable way
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and therefore they can be set exploiting the available information. For example, in sec-
tion 1.3, we have shown that τ is equal to the measurements noise. Therefore, if this in-
formation is known, it is possible to set τ beforehand. Also, a lot of the common kernels
hyper-parameters have a practical interpretation. For example, the hyper-parameters a of
the band-limited kernel (see example 1.4 for more details) imposes a limit in the frequency
domain of the identi�ed function.

However, prior knowledge is not always enough for the �ne-tuning of the hyper-parameters
and some data-driven methods are necessary. Furthermore, sometimes the prior informa-
tion can be wrong and therefore it is not advisable to put strict constraints on the hyper-
parameters that can exclude possible explanation of the data.

For this reason, in the literature, there are a lot of di�erent studies on this topic [104, 121].
This problem is often treated as a complexity tuning problem because the hyper-parameters
determines the the complexity of the hypothesis set. Therefore, they have to be tuned by
leveraging the bias-variance trade-o� [17, 44]. The three most common ways to tune them
are: cross-validation, Generalized Cross-Validation (GCV), and marginal likelihood (ML) op-
timization. However, in the literature there are other methods such as the Stein’s Unbiased
Risk Estimate (SURE) [118].

1.5.1 Cross-validation
The cross-validation [17, 44] is a technique widely used for the hyper-parameters selection
and the tuning of the complexity of the identi�ed object in many di�erent statistical learning
problems.

The basic idea is to divide the available dataset in two disjointed parts:

• the �rst part DT , called training dataset, is used to identify the model;

• the second part DV , called validation dataset, is used to estimate the out-of-sample
performance of the identi�ed model, i.e. the performance on data points that are not
employed for the identi�cation;

Then, the selected hyper-parameters are the one that maximize the performance of the
estimated out-of-sample performance. In mathematical form, we can write

ζ̂ = arg min
ζ∈Rnζ×1

 ∑
x∈DV

L
(
yi, ĝ

ζ
DT (xi)

) (1.195)

where L : R× R → R is a loss function that is small when the two arguments are similar
and ĝζDT is the estimated function using only the training dataset DT and employing the
hyper-parameters ζ.

The drawback of this procedure, called hold-out cross-validation, is that only a part of the
dataset is actually used for training purpose. To solve this problem, usually, the so-called
k-fold cross-validation is used instead. Here, the dataset is divided in k ∈ N \ {0} disjointed
partsD1, . . . ,Dk , called folds, with approximately the same size. Then k−1 parts are used
for training and the left-out part is used as validation dataset to estimate the performance.
This procedure is then repeated k times with all the possible di�erent validation dataset. The
hyper-parameters selected are the one the maximize the mean performance of the di�erent
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k trials. In mathematical form, this is equivalent to

ζ̂ = arg min
ζ∈Rnζ×1

1

k

k∑
i=1

∑
x∈Di

L
(
yi, ĝ

ζ
D\Di (xi)

) (1.196)

where ĝζD\Di is the estimated function using the data from all the dataset excluding the fold
Di and employing the hyper-parameters ζ.

In the k-fold cross-validation, all the dataset is used for training and all cases appear as
validation cases at least one time. However, it is necessary to train the model k times. It
can be shown that smaller k provides a biased estimation of the out-of-sample performance
with small variance, vice-versa larger k provides less biased estimation with more variance.
For more details about the theoretical properties of this method, refer to chapter 7 of [44].
In practical application, the number of folds used is usually between 3 and 10.

A special case of the k-fold cross-validation is the Leave One Out Cross-Validation (LOOCV)
where the number of folds is the same as the number of data. Here, the training procedure
is executed on n− 1 regressors and validated on a single regressor. Therefore

ζ̂loocv = arg min
ζ∈Rnζ×1

{
1

n

n∑
i=1

L
(
yi, ĝ

ζ
D\{xi} (xi)

)}
(1.197)

where ĝζD\{xi} is the estimated function using the data from all the dataset excluding the
regressor xi and the hyper-parameters ζ.

It can be shown that the LOOCV provides an approximately unbias estimation but with large
variance. However, this type of cross-validation has a signi�cant computational burden
since it requires the training of n di�erent models. However, if the manifold regularization
is not used, i.e. µ = 0, it is possible to implement the LOOCV in a very e�cient manner
that has a O

(
n3
)

computational complexity [104].

1.5.2 Generalized cross-validation
The various cross-validation methods shown before require to split the dataset. When the
dataset is small this is not always possible. In these cases, it is necessary to develop a way to
tune them without training the model on a smaller training dataset. The generalized cross-
validation [44, 131] is a way to compute an approximation of the LOOCV that requires to
train the model only on the complete dataset one time.

To apply this method is necessary to introduce the concept of degrees of freedom (dof) of
the method. To understand this concept consider a classic linear regression problem with
d parameters. In this case, the number of parameters of the method is given by the actual
number of parameters used d, and the space of possible solutions has dimension d. When
we employ some sort of regularization some of the previously possible solutions becomes
too “big” to be accepted as such. Therefore the estimated model is constrained to a smaller
set. This result in a decrease of degrees of freedom. For this reason, the degrees of freedom
is a way to assess the complexity of the hypothesis set of the method.

More formally consider the following de�nition.

De�nition 1.7 (degrees of freedom (dof) [44]). Let ĝ be the estimated function obtained using
the dataset

D = {(xi, yi)| i = 1, . . . , n} (1.198)
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taken from the probabilistic model yi = g (xi) + ei where Var (ei) = β2 . Then the degrees of
freedom (dof) are de�ned as

dof (ĝ) =
1

η2

n∑
i=1

Cov (ĝ (xi) , yi) (1.199)

Remark 1.16. To understand the intuition behind this de�nition, consider the fact that
when the degrees of freedom are higher the estimated outputs will be similar to measured
ones and therefore the covariance is large.

In the supervised kernel methods explained before, we have that(
ĝζ
)>

= Kĉ (1.200)

ĉ = (K + τIn + µLK)−1 y> (1.201)

where ĝζ =
[
ĝζ (x1) , . . . , ĝ

ζ (xn)
]
∈ R1×n and ĝζ is the estimated function employing

the hyperparameters ζ. Therefore(
ĝζ
)>

= K (K + τIn + µLK)−1 y> (1.202)

= S (ζ)y> (1.203)

where S (ζ) = K (K + τIn + µLK)−1 ∈ Rn×n. It can be shown [44] that when the
estimated output can be compute using a linear transformation on the measurements the
degrees of freedom are:

dof
(
ĝζ
)

= Tr [S (ζ)] (1.204)

= Tr
[
K (K + τIn + µLK)−1

]
(1.205)

Since the degrees of freedomm provides a way to assess the complexity of the estimated
model, we can select the hyper-parameters by �nding the right trade-o� between the per-
formance on the dataset and the number of degrees of freedom. This is achieved by the
generalized cross-validation. In particular, we have [44]

ζ̂gcv = arg min
ζ∈Rnζ×1


1

n

n∑
i=1

 yi − ĝζ (xi)

1−
dof
(
ĝζ
)

n


2 (1.206)

The numerator of the cost function decreases with the performance of the estimation on the
dataset while the denominator decreases with the number of degrees of freedom. There-
fore, the minimizer ζ̂gcv provides a trade-o� between the complexity of the model and the
performance on the training dataset.
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For numerical reasons, it is convenient to minimize the natural logarithm of the GCV cost
function. Therefore:

ζ̂gcv = arg min
ζ∈Rnζ×1

log

 1

n

n∑
i=1

 yi − ĝζ (xi)

1−
dof
(
ĝζ
)

n


2
 (1.207)

= arg min
ζ∈Rnζ×1

log

n2
n

n∑
i=1

(
yi − ĝζ (xi)

n− dof (ĝζ)

)2
 (1.208)

= arg min
ζ∈Rnζ×1

{
log

[ ∑n
i=1

(
yi − ĝζ (xi)

)2
(n− dof (ĝζ))

2

]}
(1.209)

= arg min
ζ∈Rnζ×1

{
log
[
‖y − ĝ‖2

]
− 2 log

[
n− dof

(
ĝζ
)]}

(1.210)

= arg min
ζ∈Rnζ×1

{
log ‖y − ĝ‖ − log

[
n− dof

(
ĝζ
)]}

(1.211)

Furthermore, recalling that ĝ> = S (ζ)y> and dof
(
ĝζ
)

= Tr [S (ζ)], we obtain:

ζ̂gcv = arg min
ζ∈Rnζ×1

{
log
∥∥∥(In − S (ζ))y>

∥∥∥− log [n− Tr [S (ζ)]]
}

(1.212)

therefore, it is only necessary to compute the matrix S (ζ) in order to evaluate the cost
function.

1.5.3 Marginal likelihood optimization
In the learning theory, a typical approach for parameter estimation is the maximization of
the likelihood function. This function is the pdf of the conditional distribution of the avail-
able measurements given a certain set of parameters. The same reasoning can be extended
to the hyper-parameters if it is possible to compute the distribution p (y |X, ζ ).

In section 1.3, it is shown that

p (y |g,X, ζ ) = N
(
y>
∣∣∣g>, β2In) (1.213)

p (g |X, ζ ) = N
(
y>
∣∣0n×1, β2In) (1.214)

therefore, using the conjugacy relations of the normal distribution [17], we have:

p (y |X, ζ ) =

∫
p (y |g,X, ζ ) p (g |X, ζ ) dg (1.215)

= N
(
y>
∣∣0n×1,K + β2In

)
(1.216)

now, it is possible to select the hyper-parameters the maximize this pdf.

ζ̂mml = arg max
ζ∈Rnζ×1

{
N
(
y>
∣∣0n×1,K + β2In

)}
(1.217)
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As usual, to compute this minimizer it is convenient to minimize the negative logarithm of
the pdf to remove the exponential of the normal distribution pdf.

ζ̂mml = arg min
ζ∈Rnζ×1

{
− log

[
N
(
y>
∣∣0n×1,K + β2In

)]}
(1.218)

= arg min
ζ∈Rnζ×1

− log


exp

[
−

1

2
y
(
K + β2In

)−1
y>

]
√

2nπn det (K + β2In)


 (1.219)

= arg min
ζ∈Rnζ×1

{
1

2
y
(
K + β2In

)−1
y> + log

[√
2nπn det (K + β2In)

]}
(1.220)

= arg min
ζ∈Rnζ×1

{
1

2
yĉ+

1

2
log det

(
K + β2In

)
+
n

2
log (2π)

}
(1.221)

= arg min
ζ∈Rnζ×1

{
yĉ+ log det

(
K + β2In

)}
(1.222)

This cost function requires the computation of the determinant of the square matrix K +
β2In. Since this matrix is square a positive de�nite, it is possible to employ the Cholesky
decomposition [52] in order to obtain the lower rectangular matrixQ ∈ Rn×n with strictly
positive diagonal elements such that

K + β2In = QQ> (1.223)

with this decomposition, it is possible to

• compute the vector ĉ by solving two triangular systems [52]

Qz = y> (1.224)
Q>ĉ = z (1.225)

• compute the determinant ofK + β2In with a simple multiplication

det
(
K + β2In

)
= det

(
QQ>

)
(1.226)

= det (Q)2 (1.227)

=

n∏
i=1

Q2
i,i (1.228)

whereQi,i is the i-th element on the diagonal ofQ.

Then, the cost function becomes

ζ̂mml = arg min
ζ∈Rnζ×1

{
yĉ+ log det

(
n∏
i=1

Q2
i,i

)}
(1.229)

= arg min
ζ∈Rnζ×1

{
yĉ+ 2

n∑
i=1

logQi,i

}
(1.230)
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This cost function is composed of two terms: the �rst decreases with the performance on
the training dataset of the estimated model while the second one is a penalization term on
the more complex model. For additional theoretical and computational details see [17, 104].

Remark 1.17. This method can be used only when the manifold regularization is not used,
i.e. µ = 0. If µ > 0, the Bayesian perspective, explained in Section 1.3, does not work and
therefore it is not possible to write the marginal likelihood p (y |X, ζ ). This problem will
be tackled in Chapter 6 as a new contribution of this thesis.
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CHAPTER 2

Kernel-based methods for dynamic
system identification

This chapter overviews how kernel-methods can be used in system identi�cation where the
relation between inputs and outputs is dynamic and not static. In particular, it is shown how
to employ kernel-based approaches for non-parametric system identi�cation for di�erent
classes of systems. Both linear and non-linear system will be explored.

This chapter is organized as follow:

• Section 2.1 explains how to use kernel methods for discrete linear systems;

• Section 2.2 illustrates how to use kernel methods for continuous linear systems;

• Section 2.3 delves into the identi�cation of discrete non-linear system using kernel-
methods;

In the literature, kernel methods are used for other classes of systems, such as LPV [37, 51,
107] or LTV [68]. However, these methods are outside the focus of this thesis and they will
not be treated.

2.1 Discrete-time linear system identification
Single-Input Single-Output (SISO) Linear and Time-Invariant (LTI) discrete system identi-
�cation is the most studied argument in the system identi�cation community. This kind
of systems are simple, they have a large number of well-known properties and they can
synthesize a large number of common phenomena. Furthermore, algorithms for this kind
of model are well-known [72, 98], implemented in a lot of di�erent libraries [63, 71] and
with strong theoretical guarantees on the stability of the estimated model.

2.1.1 Parametric system identification
A common family of discrete Single-Input Single-Output (SISO) Linear and Time-Invariant
(LTI) systems, that is commonly used in system identi�cation, is the AutoRegressive with
an eXogenous variable (ARX) family [19]. In this kind of model the samples of the output
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can be computed using the recursive equation

y (ti) =

ny∑
j=1

ăjy (ti−j) +

nu∑
j=1

b̆ju (ti−j) + e (ti) (2.1)

where

• u : R→ R is the input signal (often called exogenous variable or excitation signal);

• y : R→ R is the output signal;

• ti = i · Ts, with i ∈ Z, are the time instants selected by the sampling process and
Ts ∈ R+ is the sampling period;

• ny is the number of autoregressive coe�cients;

• nu is the number of exogenous coe�cients;

• ă1, . . . , ăny are the coe�cients of the autoregressive part;

• b̆1, . . . , b̆nu are the coe�cients of the exogenous part;

• e : R→ R is the noise term.

The samples of the noise are considered IID, the input function is considered known in all
the domain and the sampling period is considered to be known.

For compactness sake, the i-th sample of the input, output and noise signal are indicated,
respectively, with ui = u (ti), yi = y (ti) and ei = e (ti). Then, the recursive equation (2.1)
can be rewritten as

yi = x>i ϑ̆+ ei (2.2)

where nϑ = nu + ny and

ϑ̆ =
[
ă1 · · · ănu b̆1 · · · b̆ny

]>
∈ Rnϑ×1 (2.3)

xi =
[
yi−1 · · · yi−ny ui−1 · · · ui−nu

]>
∈ Rnϑ×1 (2.4)

are, respectively, the parameters vectors and the t-th regressors.

Now, the objective is to identify the unknown coe�cients ϑ̆with the �rst n output samples,
i.e.

D = {yi|i = 1, . . . , n} . (2.5)

The most common used rationale is Prediction Error Method (PEM) [19, 72]. Here, the
estimation is obtained by selecting the model that minimizes the one-step prediction error
on the available data. This results in the optimization problem:

ϑ̂ = arg min
ϑ∈Rnϑ×1

{
n∑
i=1

(
yi − ŷϑi|i−1

)2}
(2.6)

where ŷϑi|i−1 is the one-step predictor of the model de�ned using the parameters ϑ. For the
ARX family, it is possible to show [72] that the optimal predictor is

ŷϑi|i−1 = x>i ϑ (2.7)
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therefore

ϑ̂ = arg min
ϑ∈Rnϑ×1

{
n∑
i=1

(
yi − x>i ϑ

)2}
(2.8)

Remark 2.1. To compute the predictor at the i-th time instant, it is necessary to know
the measurements of y for some past time instants. For this reason, the summation in the
optimization problem has to be restricted to the cases where the predictor can be computed
with the data at hand. Otherwise, it is possible to make some assumption on the state of the
system output before the start of the experiment.

This estimator requires the knowledge of na and nb. Usually, this is not the case and they
need to be estimated from the dataset. In the literature, this problem is treated as an hyper-
parameters selection problem. Therefore, the cross-validation is the most common solu-
tion [19, 72]. If the dataset is not large enough to be divided then some sort of penalization
on the number of parameters nϑ is used, such as Akaike Information Criterion (AIC) [2, 72],
Bayesian Information Criterion (BIC) [72, 106, 112] or other similar penalizations [19, 72].

2.1.2 Non-parametric system identification
In recent time, the trend moved to the possibility to estimate the model without using the
knowledge on the number of parameters. These methods are called non-parametric and
they are, usually, kernel methods. The main idea is to use a large number of parameters,
potentially an in�nite amount, and a regularization term that penalizes overly complex
models thanks to RKHS properties.

To do so, consider that the output of a generic discrete LTI model can be computed as

yi =

m∑
ξ=0

ğ (ξ)ui−ξ + ei (2.9)

where m ∈ N ∪ {+∞}, ğ : N→ R is the impulse response of the system and et is a white
noise. Here, the unknown parameters are the, potentially, in�nite samples of the impulse
response {ğ (i)}mi=0.

Remark 2.2. It can be shown that this representation is equivalent to the ARX model [128],
presented in equation (2.1). In particular, if m is �nite, the system is a Finite Impulse Re-
sponse (FIR) because all the impulse response samples after the time-instants m are 0. Vice
versa, when m = +∞ the system is a In�nite Impulse Response (IIR) like the ARX, with
na > 0, model considered before.

To identify the impulse response functions ğ : N → R, we can assume that this function
is a member of a certain RKHS H with kernel k : N × N → R because the function that
we want to identify has N as domain. Then using the PEM rationale with the Tikhonov
regularizer, we obtain

ĝ = arg min
g∈H

{
n∑
i=1

(
yi − ŷgi|i−1

)2
+ τ ‖g‖2H

}
(2.10)

= arg min
b∈H


n∑
i=1

yi − m∑
ξ=0

g (ξ)ui−ξ

2

+ τ ‖g‖2H

 (2.11)
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where ŷgi|i−1 =
∑m

ξ=0 g (ξ)ui−ξ is the one-step predictor of the model de�ned using the
impulse response g.

This cost function is di�erent from the one of the classical Tikhonov regularization because,
in the loss term, the output measurements are not compared with the evaluation of the
unknown function, but with a functional evaluated on the function. In particular, de�ning
the functionals:

pi : H → R

g →
m∑
ξ=0

g (ξ)ut−ξ
i = 1, . . . , n (2.12)

the cost function becomes

ĝ = arg min
g∈H

{
n∑
i=1

(yi − pi (g))2 + τ ‖g‖2H

}
(2.13)

Remark 2.3. It is trivial to show that the functionals pt, with t ∈ N, are linear. Therefore

pi (αg1 + βg2) = αpi (g1) + βpi (g2)

∀i ∈ N
∀g1, g2 ∈ H
∀α, β ∈ R

(2.14)

For this cost function, it is not possible to use the classical representer theorem, see The-
orem 1.7. However, there is a more general representer theorem [32, 40, 95] that can be
applied to this cost function. In this case, the minimizer can be written in the form

g (i) =
n∑
j=1

cjpj (ri) (2.15)

=

n∑
j=1

cj

m∑
ξ=0

ri (ξ)uj−ξ (2.16)

=
n∑
j=1

cj

m∑
ξ=0

uj−ξk (ξ, i) (2.17)

therefore, the optimization problem can be reduced to a n dimensional problem that search
the optimal parameters ĉ = [ĉ1, . . . , ĉn]> ∈ Rn×1. Alternatively, it is also possible to write

g =
n∑
j=1

cj

m∑
ξ=0

uj−ξrξ (2.18)

=

n∑
j=1

m∑
ξ=0

cjuj−ξ · rξ (2.19)

where we can see that the estimated function is a weighted sum of representer functions
of the space H. In these settings, employing the linearity of the functionals pt, the norm
becomes

‖g‖2H = 〈g, g〉H (2.20)
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=

〈
n∑
j=1

m∑
ξ=0

cjuj−ξ · rξ,
n∑
h=1

m∑
ψ=0

chuh−ψ · rψ

〉
H

(2.21)

=

n∑
j=1

n∑
h=1

cjch

m∑
ξ=0

m∑
ψ=0

uj−ξuh−ψ 〈rξ, rψ〉H (2.22)

=
n∑
j=1

n∑
h=1

cjch

m∑
ξ=0

m∑
ψ=0

uj−ξuh−ψk (ξ, ψ) (2.23)

= c>Oc (2.24)

where the matrix O ∈ Rn×n is a symmetric and positive semi-de�nite matrix whose (i, j)
element is

o (j, h) =
m∑
ξ=0

m∑
ψ=0

uj−ξuh−ψk (ξ, ψ) (2.25)

Furthermore, we can see that the loss term becomes

n∑
i=1

(yi − pi (g))2 =

n∑
i=1

yi − pi
 n∑
j=1

m∑
ξ=0

cjuj−ξ · rξ

2

(2.26)

=
n∑
i=1

yi − n∑
j=1

m∑
ξ=0

cjuj−ξ · pi (rξ)

2

(2.27)

=
n∑
i=1

yi − n∑
j=1

m∑
ξ=0

cjuj−ξ ·

 m∑
ψ=0

rξ (ψ)ui−ψ

2

(2.28)

=

n∑
i=1

yi − n∑
j=1

cj

m∑
ξ=0

m∑
ψ=0

uj−ξui−ψk (ξ, ψ)

2

(2.29)

=
n∑
i=1

yi − n∑
j=1

cjo (j, i)

2

(2.30)

=
∥∥∥y − c>O∥∥∥2

2
(2.31)

obtaining the optimization problem

ĝ =
n∑
j=1

m∑
ξ=0

cjuj−ξ · rξ (2.32)

ĉ = arg min
c∈Rn×1

{∥∥∥y − c>O∥∥∥2
2

+ τc>Oc

}
(2.33)

This is a quadratic optimization problem whose optimizer can be computed analytically. In
particular, the vector ĉ can be computed by solving the linear system

O (O + τIn) ĉ = Oy> (2.34)
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Therefore, ifO is a full rank matrix, we can write

(O + τIn) ĉ = y> (2.35)
ĉ = (O + τIn)−1 y> (2.36)

Remark 2.4. The hyperparameters can tuned as indicated in Section 1.5. It is also possible
to show that the proposed methods have good asymptotic properties [83, 94]. In particular
there are strong results for the GCV [81] and the cross-validation [82] methodologies.

2.1.3 Kernel selection
For the before-mentioned method to work, it is necessary to select the right kernel. Is it
important to note that the classical kernels, shown in Section 1.1, are not suitable in this
contest. An important restriction on the kernel choice is the computability of the estimated
impulse response. In particular, the estimated function is composed by a weighted sum of
the functional pi (rj), with j ∈ N and i = 1, . . . , n, that can be an in�nite series. Therefore,
these series have to converge to a �nite number.

This imposes an important restriction on the suitable kernels that excludes a lot of classical
kernels such as the linear kernel, polynomial kernel or gaussian kernel. It can be shown [39]
that a necessary condition for the convergence is that

lim
i→+∞

k (i, i) = 0 (2.37)

that exclude all the stationary kernels, i.e. the kernels whose evaluation depends only on
the di�erence between the arguments. Furthermore, it is necessary to select a kernel that
de�nes a space that contains only functions that correspond to the impulse response of
a stable LTI. In this way, it is possible to guarantee the stability of the identi�ed system.
Kernels with these two properties are called stable kernel [30, 33, 95]. More formally, we
de�ne:

De�nition 2.1 (Discrete-time stable kernel [30, 33, 95]). A symmetric and positive semi-
de�nite kernel k : N× N→ R that de�nes the space H is called stable kernel if and only if
H ⊆ l1.

Remark 2.5. The before-mentioned de�nition derives from the fact that an LTI system
with impulse response g is Bounded-Input Bounded-Output (BIBO) stable if and only g ∈ l1.
Therefore, if it is imposed that the space H contains only functions in l1, it is guaranteed
that the identi�ed system is BIBO stable.

To verify if a kernel is stable consider the following two theorems

Theorem 2.1 ( [39, 95]). A symmetric and positive semi-de�nite function k : N× N→ R is
a stable kernel if and only if:

∞∑
ξ=1

∣∣∣∣∣∣
∞∑
ψ=1

k (ξ, ψ) a (ψ)

∣∣∣∣∣∣ <∞ ∀a ∈ l∞ (2.38)
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Theorem 2.2 ( [39, 95]). A symmetric and positive semi-de�nite function k : N× N→ R is
a stable kernel if:

∞∑
ξ=1

∣∣∣∣∣∣
∞∑
ψ=1

k (ξ, ψ)

∣∣∣∣∣∣ <∞ (2.39)

The �rst theorem provides a su�cient and necessary condition, but it is not easily veri�able,
while the second one de�nes only a su�cient condition that can be easily veri�ed.

Remark 2.6. In recent time, it was shown that the stable spline condition is only su�cient,
but it is not necessary [18]. In other words, there exist at least a kernel that cannot be con-
sidered stable, according to De�nition 2.1, but it de�nes a space that contains only impulse
response that corresponds to stable LTI systems.

De�nition 2.1 allows understanding if a kernel can be used in these settings, but it does not
provide a way to choose the right kernel for the application at hand. In particular, given
a non-stable kernel k, it is always possible to make it stable by truncation. In fact, it is
straightforward to see that the kernel

k̃ (ξ, ψ) =

{
k (ξ, ψ) if ξ ≤ T ∧ ψ ≤ T
0 otherwise

(2.40)

where T ∈ N, is always stable. However, this small trick does not improve the performance
of the method signi�cantly, as shown in [95].

It is possible to show [32, 95] that the the most convenient kernel for this application is

k (ξ, ψ) = ğ (ξ) ğ (ψ) ∀ξ, ψ ∈ N (2.41)

where ğ is the true impulse response of the system. This kernel is usually called optimal
kernelI. For obvious reason, the optimal kernel is not usable in practice. However, it is
possible to select a kernel that mimics this behavior as much as possible. It is possible to
see that the representer functions of the optimal kernel are

rξ = ğ (ξ) · ğ ξ ∈ N (2.42)

Therefore, the representer functions of the optimal kernel correspond to the true impulse
response of the system. For this reason, we need a kernel whose representer functions
correspond to a valid impulse response of an LTI stable system. The two most used kernels
for this application are reported in the following examples.

Example 2.1: Diagonal correlated kernel [32]

The Diagonal Correlated (DC) kernel is a kernel that was recently introduced as a
suitable kernel for LTI system identi�cation and it is de�ned as

kDC (a, b) = λ
√
αa+bβ|a−b| (2.43)

where λ ∈ R+, α ∈ R+ and β ∈ [−1, 1]. It is straightforward to see that this kernel
is a stable kernel for Theorem 2.2.
The value of λ determines the amplitude of the representer functions and therefore
it is connected to the static gain of the system. Higher λ corresponds to larger static

Ifor a more formal de�nition of optimality in this context refer to [32, 95].
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gains. The other two parameters α and β provides a way to tune the shape of the
response. In Figure 2.1, the representer functions of a DC kernel with di�erent α
and β are reported. Qualitatively, α controls how much oscillations there are in the
impulse response and β the decay rate.
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Figure 2.1: Plot of three representer functions of the discrete DC kernel
with di�erent values of α and β. The parameter λ is set to 1.

Example 2.2: Stable-spline kernel [96]

The stable-splines are a family of kernels introduced in [96] as a way to make the
classic spline kernel, explained in Example 1.5, a stable kernel. The stable-spline of
order q ∈ N \ {0} is de�ned as

kq (a, b) = λsq

(
e−βa, e−βb

)
(2.44)

where sq is the kernel of the spline of order q (see Example 1.5), λ ∈ R+ and β ∈ R+.
For example, the �rst two stable-splines can be computed as

k1 (a, b) = λe−βmax(a,b) (2.45)
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k2 (a, b) = λ

(
e−β(a+b+max(a,b))

2
−
e−3βmax(a,b)

6

)
(2.46)

In Chapter 4, as a new contribution of this thesis, a general formula that can be used
to compute spline of a given order is provided.
As in the DC kernel, the value of λ determines the amplitude of the representer func-
tions and the static gain of the system. Therefore, higher λ corresponds to larger
static gains. The other hyper-parameter β can be used to tune the decay rate over
time of the representer functions of the kernel. The e�ect of β can be seen in Fig-
ure 2.2.
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Figure 2.2: Plot of three representer functions of the discrete stable-spline
kernel with di�erent values of β. The parameter λ is set to 1.

Even if these two kernels are the most used, in the literature there are some new results. In
particular, in [30] the author analyzes the problem of the kernel selection in details and he
introduces some interesting methodology to tailor the kernel for the application at hand.

2.1.4 Bayesian interpretation
In Section 1.3, we have seen that the classical Tikhonov regularization can be seen from
a Bayesian point of view. Furthermore in Section 1.5.3, we have seen that the Bayesian
perspective provides a way to tune the kernel-parameters. For this reason, it is important
to ask if there exists a Bayesian perspective even for the dynamical case.

The answers in positive as shown in [95]. In particular, it is possible to show that by im-
posing a Gaussian process prior, with zero mean and variance function k, on the unknown
impulse response we obtain a posterior whose mean is equal to the impulse response esti-
mated with the previously explained method. Furthermore, it is possible to show that the
marginal likelihood is

p (y |u, ζ ) = N
(
y> |0n×1,O + τIn

)
(2.47)
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where ζ is the hyper-parameters vector. Therefore, following the reasoning presented in
Section 1.5.3, we can select the hyper-parameters by solving the optimization problem

ζ̂mml = arg min
ζ∈Rnζ×1

{
yĉ+ 2

n∑
i=1

logQi,i

}
(2.48)

whereQ ∈ Rn×n is the Cholesky decomposition [52] of the matrixO + τIn, i.e.

O + τIn = QQ> (2.49)

2.2 Continuous-time linear system identification
The concepts explained in the previous section about the identi�cation of discrete-time LTI
systems can be extended to the identi�cation of continuous-time LTI systems. Following
the same reasoning used for the discrete-time systems, we consider that the output of a
continuous-time LTI system can be computed as

y (t) =

+∞∫
0

ğ (ξ)u (t− ξ) dξ (2.50)

where ğ : R+ → R is the impulse response of the system.

2.2.1 Non-parametric system identification
The aim is to identify the impulse response of the system using the following dataset

D = {(ti, yi) |i = 1, . . . , n} (2.51)

where the outputs yi, with i = 1, . . . , n, are taken according to the following probabilistic
model

yi =

+∞∫
0

ğ (ξ)u (ti − ξ) dξ + ei i = 1, . . . , n (2.52)

where ei, with i = 1, . . . , n, are IID output-error noises and u : R+ → R is the input
excitations used during the experiment. Here, we will assume that the excitation signal u
is known.

As for the discrete case, the main idea is to assume that the impulse response ğ is an element
of a RKHSH with kernel k : R+ × R+ → R. Then

ĝ = arg min
g∈H


n∑
i=1

yi − +∞∫
0

ğ (ξ)u (ti − ξ) dξ

2

+ τ ‖g‖2k

 (2.53)
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de�ning the functionals

qt : H → R

g →
+∞∫
0

g (ξ)u (ti − ξ) dξ dξ
t = 1, . . . , n (2.54)

we can write

ĝ = arg min
g∈H

{
n∑
t=1

(yi − qt (g))2 + τ ‖g‖2H

}
(2.55)

This optimization problem is very similar to the one obtained for discrete systems. The
only di�erence is the functionals de�nition. However, these functionals are still linear and
therefore all the steps reported for the discrete-time case are still valid. The only di�erence
is the integration instead of the summation.

For this reason, the estimated impulse response is:

ĝ (t) =

n∑
i=1

ĉiqi (rt) (2.56)

=
n∑
i=1

ĉi

+∞∫
0

rt (ξ)u (ti − ξ) dξ (2.57)

=

n∑
i=1

ĉi

+∞∫
0

k (t, ξ)u (ti − ξ) dξ (2.58)

where the coe�cient ĉ = [ĉ1, . . . , ĉn] can be computed by solving the linear system

(O + τIn) ĉ = y> (2.59)
ĉ = (O + τIn)−1 y> (2.60)

where
y =

[
y1 · · · yn

]
∈ R1×n (2.61)

andO ∈ Rn×n is the matrix whose (i, j) element is

o (i, j) =

+∞∫
0

+∞∫
0

u (i− ξ)u (j − ψ) k (ξ, ψ) dξ dψ (2.62)

2.2.2 Kernel selection
The main di�erence between the continuous-time approach and the discrete-time one is the
kernel. In the latter, the kernel de�ne a space that contains sequence while the one used for
the continuous-time approach has to contain functions. However, the reasoning used for
the discrete-time approach holds even in the continuous-time case.

In particular, we want the kernel to de�nes a space that contains only functions that corre-
spond to impulse response of BIBO stable systems and it is necessary that the functionals
pi (rt), with t ∈ R+ and i = 1, . . . , n, to converge. A continuous kernel that has these
properties is called stable kernel. This concept can be formalized in the following de�nition.
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De�nition 2.2 (Continuous-time stable kernel [30, 33, 95]). A symmetric and positive semi-
de�nite kernel k : R+ ×R+ → R that de�ne the spaceH is called stable kernel if and only if
H ⊆ L1.

Then, to check if a kernel is stable, it is possible to use the following two theorems.

Theorem 2.3 ( [39, 95]). A symmetric and positive semi-de�nite function k : R+×R+ → R
is a stable kernel if and only if:

+∞∫
0

∣∣∣∣∣∣
+∞∫
0

k (ξ, ψ) a (ψ) dψ

∣∣∣∣∣∣ dξ <∞ ∀a ∈ L∞ (2.63)

Theorem 2.4 ( [39, 95]). A symmetric and positive semi-de�nite function k : R+×R+ → R
is a stable kernel if:

+∞∫
0

∣∣∣∣∣∣
+∞∫
0

k (ξ, ψ) dψ

∣∣∣∣∣∣ dξ <∞ (2.64)

As in the discrete case, the �rst theorem provides a su�cient and necessary condition, but
it is not easily veri�able, while the second one de�nes only a su�cient condition that can
be easily veri�ed.

Another similarity with the discrete case is the optimal kernel. It can be show [32, 95] that
the optimal kernel in the continuous-time settings is

k (ξ, ψ) = ğ (ξ) ğ (ψ) (2.65)

where ğ is the true impulse response of the system under analysis.

Therefore, we need a kernel that de�nes a space with representer functions similar to the
true impulse response of the system. This is the same reasoning used to de�ne the various
kernels for the discrete case. In fact, it is possible to employ the same kernels as in the
discrete case by enlarging the domain from N to R+. For this reason the most popular
kernels are

• The continuous DC kernel that is de�ned as

kDC (a, b) = λ
√
αa+bβ|a−b| (2.66)

where λ ∈ R+, α ∈ R+ and β ∈ [0, 1]. Three representer functions of this kernel are
reported in Figure 2.3. For more details, see Example 2.1.

• The continuous stable-spline kernel that is de�ned as

kq (a, b) = λsq

(
e−βa, e−βb

)
(2.67)

where q ∈ N \ {0} is the spline order, sq is the spline kernel of order q, λ ∈ R+ and
β ∈ [0, 1]. Three representer functions of this kernel are reported in Figure 2.4. For
more details, see Example 2.2.

Remark 2.7. The continuous DC kernel is well de�ned only when β > 0 because otherwise
the term β|ti−tj | is a complex number when |ti − tj | /∈ Z.
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Figure 2.3: Plot of three representer functions of the continuous DC kernel
with di�erent values of α and β. The parameter λ is set to 1.

Remark 2.8. The Bayesian interpretation is analogue to the one explained for the discrete
case in Section 2.1.4. For this reason, the reader can refer to that section or to the litera-
ture [32].

2.3 Discrete-time non-linear system
identification

In the previous sections, it is illustrated how the system identi�cation community has
adapted the kernel methods to the estimation of the impulse response of an LTI system
to develop a true black-box algorithm that does not require the knowledge of the system
basis structure. In the last decade, kernel methods were employed also for non-linear sys-
tems [6, 86, 97].

In these works, the focus is on the identi�cation of Nonlinear AutoRegressive with an eX-
ogenous variable (NARX) models. In this type of models, the output is computed as a non-
linear function of the input and output of the model taken at previous time-instants. In
mathematical form, a NARX system can be written as

y (ti) = ğ
(
u (ti − 1) , · · · , u (ti−nu) , y (ti − 1) , · · · , y

(
ti−ny

))
+ e (ti) (2.68)
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Figure 2.4: Plot of three representer functions of the continuous stable-
spline kernel with di�erent values of β. The parameter λ is set to 1.

where

• u : R→ R is the input signal;

• y : R→ R is the output signal;

• ti = i · Ts, with i ∈ Z, are the time instants selected by the sampling process and
Ts ∈ R+ is the sampling period;

• ny is the autoregressive order;

• nu is the exogenous order;

• ğ : Rnx×1 → R, with nx = nu + ny , is a function that describes the model behavior;

• e : R→ R is the noise term.

The samples of the noise are considered IID and the sampling period is considered to be
known. For compactness sake, as in Section 2.1, the i-th sample of the input, output and
noise signal are indicated, respectively, with ui = u (ti), yi = y (ti) and ei = e (ti). Now,
the recursive equation 2.68 can be written as

yi = ğ (xi) + ei (2.69)

where
xi =

[
ui−1 · · · ui−nu yi−1 · · · yi−ny

]>
∈ Rnx×1 (2.70)

where xi ∈ Rnx×1 is the i-th regressor and nx = nu + ny is the regressor length. The
function ğ characterize the behavior of the system and it is considered unknown in the
identi�cation problem. The orders nu and ny are typically unknown, however, let us �rst
consider the case where these values are known.
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Suppose, now, to have the �rst n input-output couples, i.e.

D = {(ui, yi) |i = 1, . . . , n} (2.71)

and to want to employ the PEM approach for the identi�cation of the model ğ. Then the
estimation ĝ is obtained by solving the optimization problem

ĝ = arg min
g∈H

{
n∑
i=1

(yi − g (xi))
2

}
(2.72)

whereH is a certain hypothesis set.

Remark 2.9. To compute the predictor at the i-th time instant, it is necessary to know
the measurements of y for some past time instants. For this reason, the summation in the
optimization problem has to be restricted to the cases where the predictor can be computed
with the data at hand. Otherwise, it is possible to make some assumption on the state of the
system output before the start of the experiment.

This optimization problem strongly depends on the type of hypothesis set used. A com-
mon approach is to parametrize the function g with a �nite number of parameters in order
to obtain a �nite-dimensional optimization problem. This can be achieved by using, for
example, wavelets [133] or neural network [28, 92]. However, these approaches create non-
convex cost functions that are di�cult to minimize e�ciently. To solve this problem, some
researchers propose to use a linear-in-the-parameters parametrization [99]. However, this
approach requires a large number of parameters and very complex models. To solve this
problem, these linear-in-the-parameters parametrizations are often equipped with a LASSO
regularizer [20]. Some researchers have also advocated for the use of the Simulation Error
Method (SEM) [20, 99, 100] approach instead of the PEM one in order to obtain a more robust
non-linear model. However, in this thesis, the focus will be on the PEM approach because
it provides simpler cost functions that allow a more e�cient minimization procedure.

2.3.1 Kernel method
More recently, the idea to use an RKHS as a hypothesis set was explored [6, 86, 97]. In these
settings, the idea is to use a large amount, potentially in�nite, of features and to resolve
the optimization problem using the representer theorem. Following this rationale, let us
assume that the hypothesis space H is an RKHS with kernel k and that the cost function
becomes

ĝ = arg min
g∈H

{
n∑
i=1

(yi − g (xi))
2 + τ ‖g‖2H

}
(2.73)

where the Tikhonov regularizer is added in order to tune the complexity of the solution.

Then, it is possible to apply the standard representer theorem reported in Theorem 1.7 in
order to boil down the number of parameters to a �nite number. In particular, the optimizer
ĝ can be written in the form

ĝ =

n∑
i=1

ĉirxi (2.74)

where rx is the representer of the regressor x, as de�ned in 1.2. Following the same rea-
soning as in the static case described in Section 1.2.2, we obtain that

(K + τIn) ĉ = y> (2.75)
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ĉ = (K + τIn)−1 y> (2.76)

where

y =
[
y1 · · · yn

]
∈ R1×n (2.77)

K =


k (x1,x1) · · · k (x1,xn)

... . . . ...

k (xn,x1) · · · k (xn,xn)

 ∈ Rn×n (2.78)

2.3.2 Kernel and order selection
As in the linear case, the choice of the right kernel is key in the performance of this method.
However, assessing the stability of a non-linear system is di�cult and the problem of de�n-
ing a kernel that guarantees some sort of stability on the system is, according to the author
knowledge, still unsolved. However, it is possible to encode in the kernel some of the im-
portant properties that the function g has to have. In particular, it is known that a stable
dynamical system has a fading memory. In details, the dependency of the output yi on the
input-output samples (uj , yj) decreases as |i− j| increases.

The simplest way to achieve this fading memory is to tune the memory of the system by
modifying the orders nu and ny . In this case, the output will strongly depend on the closest
nu input samples and to the closest ny output samples while it will not depends on the other
samples. Here, the orders nu and ny are treated as an hyper-parameters of the kernel that
has to be tuned.

In these settings, it is necessary to use a kernel that can works with di�erent regressor
lengths because they are an hyper-parameters. For this reason, a reasonable choice is the
Gaussian kernel

k (xa,xb) = λnle
−
‖xa−xb‖22

σ2 (2.79)

where σ > 0 and λnl > 0 are two hyper-parameters to tune. In this kernel, the two pa-
rameters can have arbitrary length because the 2-norm is de�ned for every �nite regressors
length. Usually, this kernel is used in combination with the linear kernel because it is known
that the RKHS de�ned by the Gaussian kernel does not contain linear functions. Therefore,
it is convenient to enrich the kernel with a linear one

k (xa,xb) = λnle
−
‖xa−xb‖22

σ2 + λlx
>
a xb + λc (2.80)

where λnl > 0, λl > 0 and λc > 0 are the strength of, respectively, the Gaussian part, the
linear part and constant component.

A second approach is to de�ne a kernel that works on very long regressors, i.e. with large
nu and ny , but that weights each sample di�erently based on its position inside the regres-
sor itself. In this way, it is possible to increase the importance of the closest samples and
decrease the one for the furthest away measurements. Ideally, we would want to use an in-
�nite long regressor with a dependency that decreases exponentially to zero with the time
di�erence. This approach was explored in [97] where the author de�nes and characterize a
new kernel that employs this idea. This kernel is de�ned for the case where nu = ny = m
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and it can be computed as:

k (xa,xb) = λnl

m−p+1∑
t=1

e−βnlte−
dt(a,b)
σ2 (2.81)

where

di (a, b) =

p−1∑
j=0

(ua−i−j − ub−i−j)2 + (ya−i−j − yb−i−j)2 (2.82)

while λnl ∈ R+, βnl ∈ R+, σ ∈ R+ and 1 ≤ p ≤ m are hyper-parameters to tune.

To understand how this kernel behaves, consider �rst the simpler case when p = 1. Here,
the kernel boils down to

k (xa,xb) = λnl

m∑
i=1

e−βnlie−
(ua−i−ub−i)2+(ya−i−yb−i)2

σ2 (2.83)

now, it is clear that this kernel is a weighted sum of Gaussian kernels. Using the sum of
kernel theorem, reported in Theorem 1.5, we can assess that the space H de�ned by k
contains functions composed by a weighted sum. In particular, if g ∈ H than

g (xa) = λnl

m∑
i=1

e−βnligi (ua−i, ya−i) (2.84)

where gi, with i = 1, . . . ,m, are functions that belongs to the space de�ned by a Gaus-
sian kernel with width σ. Therefore, the input-output samples closest in time with x are
weighted more than the one taken further in time. Additionally, these weights decrease
exponentially with time creating the desired fading memory.

However, with p = 1, there is no non-linear relation between samples taken at di�erent time
instants. To solve this problem we can increase the parameter p that controls the number
of samples fed to the Gaussian kernel. In particular, if the function g is an element of the
space de�ned by k then

g (xa) = λnl

m∑
i=1

e−βnligi (ua−i, . . . , ua−i−p+1, ya−i, . . . , ya−i−p+1) (2.85)

Therefore, the same reasoning employed when p = 1 still holds, but now there are non-
linear relations between samples taken at di�erent time instants.

This kernel can model the non-linearities of the system, but it fails to see the eventual
linear components [97]. Therefore, it is useful to add a second kernel that can model the
linearities of the system. Since we are employing a large regressor, it is convenient to add
the exponentially decaying weights also to the linear part in order to consider the fading
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memory of the system. For this reason, the kernel becomes:

k (xa,xb) = λnl

m−p+1∑
i=1

e−βnlie−
dt(a,b)
σ2 +

+ λlu

m∑
i=1

e−βluiua−tub−t+

+ λly

m∑
i=1

e−βlyiya−tyb−t

(2.86)

where λnl ∈ R+, λlu ∈ R+ and λly ∈ R+ are, respectively, the strength of the non-linear
part, the linearity with respect of the past inputs and the linearities with respect of the
past outputs while βnl ∈ R+, βlu ∈ R+ and βly ∈ R+ are, respectively, the rate of the
exponentially decaying weights of the non-linear part, the linearity with respect of the past
inputs and the linearities with respect of the past outputs.

For a more formal characterization of this kernel refer to [97].
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CHAPTER 3

Computational remarks for the
implementation of kernel methods

As seen in Section 1.2.2, the solution of the kernel-based regression problem is carried out
by solving a linear system. However, in many practical applications, the matrix that has to
be inverted is singular for computational reasons. In this Chapter, this behavior is explored
in detail.

In particular, it is shown that there in�nite many possible solutions of the linear system
and that they all correspond to the same estimated function. For this reason, this apparent
problem becomes an opportunity to select a coe�cient vector that has additional useful
properties not strictly coupled with the out-of-sample performance of the estimation. For
example, we will show an algorithm that selects the solution that minimizes the computa-
tional complexity of the estimated model, i.e. the one that has the least number of non-zero
elements.

Additionally, it is possible to tackle the problems that arise from the ill-conditioning of the
semi-supervised learning using the manifold regularizer with a small to none Tikhonov
regularization (see Section 1.4 for more details). In particular, it is proposed an algorithm
that selects one of the equivalent solutions reliably even in these conditions.

The remainder of the Chapter is organized as follow:

• Section 3.1 brie�y recalls the RKHS regression problem with the Tikhonov and the
manifold regularizers and the singularity of the matrix, that has to be inverted, is
shown and motivated;

• in Section 3.2 a detailed analysis of that RKHS regression with a singular kernel matrix
is presented;

• in Section 3.3 the algorithm for the selection of the solution that minimizes the com-
putational complexity of the estimated model is described and analyzed;

• Section 3.4 describes the algorithm that deals with the ill-conditioning of the semi-
supervised manifold regression;

• Section 3.5 ends the chapter with some concluding remarks;

• Section 4.10 contains the proofs of all the presented theorems.
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3.1 Background and motivation
Consider the dataset

D = {(xi, yi) |1 ≤ i ≤ n} , (3.1)

sampled from the generic probabilistic model

yi = g (xi) + ei (3.2)

where ei are IID noises with variance β2, xi ∈ X ⊆ Rnx×1 are the regressors, yi ∈ R
denote the measurements and g is an unknown function.

Remark 3.1. This model corresponds to the one described in Section 1.2.2 for the iden-
ti�cation of a static model. However, this formulation is general enough to comprehend
the dynamical system case. In particular, when x is composed by the past input-output
samples this formulation is equivalent at the one used in Section 2.1.4 for the non-linear
system identi�cation. Furthermore, it is trivial to change g (xi) with the functional used
for the identi�cation of the impulse-response of a linear system, as shown in Section 2.1
and Section 2.2.

To make the notation more compact, we de�ne the vectors:

y =
[
y1 · · · yn

]
∈ R1×n, (3.3)

g =
[
g (x1) · · · g (xn)

]
∈ R1×n, (3.4)

e =
[
e1 · · · en

]
∈ R1×n (3.5)

and rewrite (3.2) as:
y = g + e, (3.6)

We consider the problem of �nding from data an estimator ĝ of the function g, by minimiz-
ing a regularized �tting cost, i.e.:

ĝ = arg min
g∈H

{J (g)} (3.7)

J (g) = ‖y − g‖22 + τ ‖g‖2H + µgMg> (3.8)

whereH is an RKHS [4, 109] with kernel k : X ×X → R (see Section 1.1 for more details),
τ and µ are non-negative scalars that de�ne the strength of the regularizers, ‖·‖H is the
induced norm of the RKHSH, andM ∈ Rn×n is symmetric and positive semi-de�nite.

The cost function J is composed by three terms:

• The �rst one is a quadratic loss;

• The second one is the classical Tikhonov regularizer [111, 131], as explained in Sec-
tion 1.2.1;

• The third one is a intrinsic regularizer [10, 11] that employ a graph-based solution [10,
13, 14, 15, 23, 36, 49], as explained in Section 1.4.

Remark 3.2. More generally, in the semi-supervised case (see Section 1.4.3), the matrix
M has dimension r > n and the regularization term is ḡMḡ> where ḡ ∈ R1×r is built
by evaluating g in correspondence of a set of regressors with cardinality r. Here, we will
keep the dimension of M equal to n (supervised case) to keep the mathematical notation
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compact. With similar reasoning, it is possible to generalize the discussion to the more
generic case. More details are given in Section 3.4.

The Representer theorem [11, 40, 111] states that the minimizer of J (g) can be written in
the form:

ĝ (x) = ĉ> · k∗ (x) , (3.9)

where k∗ : X → Rn×1 is a function such that

k∗ (x) =
[
k (x1,x) · · · k (xn,x)

]>
∈ Rn×1 (3.10)

and the coe�cients vector ĉ ∈ Rn×1 can be found by minimizing (3.8), which can be rewrit-
ten as a function of c as:

Jc (c) =
∥∥∥y> −Kc∥∥∥2

2
+ c> (τK + µKMK) c (3.11)

= c>Bc− 2c>b+ yy>. (3.12)

In the above equations,K is the kernel matrix whose (i, j) entry is k (xi,xj) and

B = KA ∈ Rn×n (3.13)
A = K + τIn + µMK ∈ Rn×n (3.14)
b = Ky> ∈ Rn×1 (3.15)

Remark 3.3. Note that B is symmetric and positive semi-de�nite because it is de�ned as
a multiplication of symmetric positive semi-de�nite matrices.

Since Jc is a quadratic function, its stationary points can be computed analytically as the
solution of

Bc = b. (3.16)

This is a linear system with n variables and n equations, thus it has a unique solution if and
only ifB is non-singular.

Proposition 3.1. The rank of the matrix B is equal to the rank of the matrix K for every
non-negative values of τ and µ.

Proof. See Section 3.6 on page 79. �

In order to have a full-rank B and a unique solution of (3.16), the kernel matrix K must
be non-singular. If k is a non-degenerate kernel, this is always the case, because the eigen-
values of the matrix K are an approximation of the eigenvalues of the kernel function
k [104]. In practice, however, this may not be the case. In fact, the eigenvalues of the kernel
function k tend to zero with a rate that depends on the kernel shape and the regressors
distribution [104]. Therefore, since the kernel matrixK is computed with limited machine
precision, the lowest eigenvalues may become practically zero. This situation is illustrated
in Example 3.1, which further motivates the presented work.

Example 3.1: Example with a Gaussian kernel

Consider the function g : [−5, 5]→ R de�ned as:

g (x) = 0.5 cos (3x) + 0.3x2 sin (x) + x+ 0.2x2. (3.17)
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The available dataset D = {(xi, yi) |1 ≤ i ≤ n} is obtained from (3.2) using xi ∼
U (−5, 5) and ei ∼ N (0, 1). The problem is tackled using the Gaussian kernel

k (a, b) = exp[− (a− b)2] (3.18)

and with M equal to the Laplacian matrix, constructed as in [11], with a fully con-
nected regressor graph that connects the nodes i and j with a edge weighted

wi,j = exp
[
−0.01n2 (xi − xj)2

]
. (3.19)

The regularization strengths are set to τ = µ = 0.05.
In Figure 3.1 (left plot), the median of the �rst 80 eigenvalues ofK over 100 Monte
Carlo runs (with di�erent regressors) are plotted for the case of n = 500. At �rst
sight, it is clear that many of them become practically zero due to numerical preci-
sion. As a consequence, the rank ofK becomes lower than n, as shown in Figure 3.1
(right plot). In the same �gures, both single and double precision computations are
plotted, to show that the above problem is actually due to numerical issues and is
more evident when more limiting numerical accuracies are employed.
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Figure 3.1: Median eigenvalues of K over 100 Monte Carlo runs using
di�erent regressors (left) and the corresponding median rank of K (right)
for n = 500 in Example 3.1. Red circles: single precision, blue circles:

double precision.

This phenomenon can be explained considering that, when the number of data n increases,
the Representer theorem enlarges the number of features. However, they tend to become
very similar to each other and, therefore, practically redundant. This problem could be
attenuated with better precision that, however, cannot be selected arbitrarily in real-world
applications.

3.2 Kernel-based learning with a singular kernel
matrix

Consider the generic kernel k̃with the Mercer expansion (see Section 1.1.2 for more details):

k̃ (a, b) =

∞∑
i=1

σ2i ϕi (a)ϕi (b) , (3.20)
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where σ2i are the eigenvalues of the kernel and ϕi ∈ Hk̃ are its eigenfunctions. Following
the observations of the previous section, we will now consider the case where only the
�rst m eigenvalues are di�erent from zero. The actual kernel k has the truncated Mercer
expansion:

k (a, b) =

m∑
i=1

σ2i ϕi (a)ϕi (b) . (3.21)

This is a degenerate kernel with m non-zero eigenvalues. The value of m depends on the
numerical precision, the kernel type, and the regressors distribution. Assuming (reasonably)
that m < n, by using k instead of k̃, the kernel matrixK has rank m and it is singular.

Since K is symmetric, K = UΛU>, where Λ ∈ Rm×m is a diagonal matrix built with
the strictly positive eigenvalues of K and the columns of U ∈ Rn×m are the correspond-
ing eigenvectors [52]. Recall that U>U = Im, Λ is invertible and rank (U) = m. The
following theorem holds.

Theorem 3.1 (Degenerate solution). Let

Sc =
{
c ∈ Rn×1 s.t. Bc = b

}
(3.22)

be the solution set of the linear system (3.16) and N
(
U>
)
be the null space of U>. Then:

a) Sc 6= ∅, i.e. the linear system (3.16) is consistent;

b) Sc is an a�ne space with dimension n−m;

c) given c1, c2 ∈ Sc, c1 − c2 ∈ N
(
U>
)
;

d) given c ∈ Sc, c is a global minimum of Jc.

Proof. See Section 3.6 on page 80. �

Theorem 3.1 allows us to better understand what happens when the kernel matrix becomes
rank de�cient. Speci�cally, the cost function Jc becomes a degenerate paraboloid with in-
�nite minima lying on a subspace of dimension n −m, as it is shown in point b), and Sc
becomes the set containing all the global minima of Jc, as it is shown in point d).

Remark 3.4. When n = m, it is possible to note that this theorem still holds and that the
solution space Sc has dimension n−m = 0. Therefore, in this particular case, the solution
is unique. This is the case that is normally considered in the literature [17, 44, 104] where
the matrixK is considered full-rank and therefore invertible.

Recalling that the estimated function ĝ can be written as in (3.9) for the Representer theorem,
it is possible to assign an estimated function to each element of the solution set Sc. Given
the solution c ∈ Sc the associated estimated function will be denoted as ĝc.

Theorem 3.2 (Equivalent solutions). Let c1, c2 ∈ Sc and x ∈ X . Then ĝc1 (x) = ĝc2 (x).

Proof. See Section 3.6 on page 82. �

From the above theorem, it turns out that di�erent solutions can be equivalently selected.
Typically, the matrix K is considered invertible, i.e. n = m. In this case, the solution is
unique and can be computed by solving the linear system

AcT = y> (3.23)
cT = A−1y> (3.24)
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therefore, the most common way to compute the solution vector is to solve the linear sys-
tem (3.23) [17, 44, 104], usually, using the Cholesky decomposition ofA [52, 104]. This is a
valid approach, even whenK is singular because

BcT = KAA−1y> = By> = b, (3.25)

This solution cT = A−1y>, that will be called trivial solution from now on, does not have
any special property, but it is straightforward to compute. Therefore, if the computational
time needed to �nd the solution is the most important aspect for the considered application,
solving the linear system (3.23) to �nd the trivial solution remains a suitable approach even
whenK is not-invertible.

However, this solution exists only when the matrix A is invertible and when dealing with
the manifold regularization this is not always the case. Furthermore, when the matrixA is
ill-conditioned, like in the case where the manifold regularizer is the predominant one [11],
this approach is ill-conditioned.

In the next two sections, two non-trivial solutions with di�erent properties are described.

3.3 A sparse eqivalent solution
In general, kernel methods produce an estimated function that can be written as the sum
of n features, as shown in (3.9) or in more details in section 1.2.2. With large n, this kind of
models can be computationally expensive and they require the entire training dataset to be
stored.

To solve this problem, consider that (3.9) can be rewritten as

ĝc (x) = c>k∗ (x) =
∑
i∈I

cik (xi,x) (3.26)

where ci ∈ R is the i-th element of the vector c and I = {1 ≤ i ≤ n s.t. ci 6= 0} is the
set of the indexes where the vector c is non-zero. It is possible to exploit the additional
freedom coming from the singularity of K to force many entries of c to zero and decrease
the computational complexity of the estimated model. Furthermore, it is necessary to store
only the part of the training dataset with the indexes inside the set I .

To tackle this problem consider the Complete Orthogonal Decomposition (COD) [52] of the
matrixB. This decomposition searches the quadruple (Q,R,H, r) such that:

a) r = rank (B);

b) Q,H ∈ Rn×r are orthogonal matrices, i.e. Q>Q = Ir andH>H = Ir;

c) R ∈ Rr×r is a upper triangular matrix;

d) B = QRH>;

The algorithm that computes this decomposition requires the tuning of the tolerance pa-
rameter ε, so that all the eigenvalues smaller of ε are considered to 0. This threshold ε can
be tuned using the characterization of the quantization noise level of the elements of the
matrix [85] (i.e., machine precision). A common criterion for the selection of this threshold
is [52]

ε = δ (‖B‖∞) (3.27)
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where δ is a function that returns the positive distance between its argument and the next
larger �oating point number with the same precision and ‖B‖∞ is the matrix∞-norm of
B.

Remark 3.5. According to Proposition 3.1, we have that the rank r of B is equal to the
rank m ofK .

Using this decomposition, the linear system (3.16) can be rewritten as

Bc = b (3.28)
QRH>c = b (3.29)

Q>QRH>c = Q>b (3.30)
RH>c = Q>b (3.31)

this is a linear system with m equations and n variables and, therefore, it is underdeter-
mined. Now, the objective is to �nd the solution with the larger number of 0 elements. In
theory, this is achieved by solving the optimization problem

cln0 = arg min
c∈Rn×1

‖c‖0 (3.32)

s.t. RH>c = Q>b (3.33)

Remark 3.6. It is straightforward to note that a solution with at least n−m entries equal
to 0 always exists [21, 65].

It is a well-known fact that is not possible to compute cln0 in polynomial time [21, 65,
84]. For this reason, in the literature there di�erent approaches that try to compute a good
approximation of cln0. The most common ones are derivations of the minimization of the
l1 norm [22, 66]. Some alternatives relies on the greedy rationale [122, 124]. All these
approaches can be used to solve the problem at hand, however, in this document, the classic
l1 minimization [65] is used.

cln1 = arg min
c∈Rn×1

‖c‖1

s.t. RH>c = Q>b
(3.34)

This is a linearly constrained convex optimization problem [21] that can be solved using an
appropriate solver. In this document, YALMIP [73] equipped with CPLEX was used. This
solution will be called Least Norm 1 (LN1) solution from now on.

Remark 3.7. The reasoning behind the optimization problem (3.34) is analogue to the one
behind the LASSO regularization [17, 44]. However, the objective is di�erent: here, we want
to solve an underdetermined linear system of equations while the LASSO regularization is a
regularizer that can be used to impose sparsity on the estimation of a large linear regression
problem.

Example 3.2: Example of computation of the LN1 solution

Consider again the problem treated in Example 3.1. Since the rank of the matrix K
may be small with respect of the number of data n, it is possible to �nd a solution cln1
with several zero entries. This is con�rmed by the results in Figure 3.2, illustrating
the number of non-zero elements over 103 runs. The �gure also shows that such a
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number does not change signi�cantly with n. This is reasonable, as the complexity
of the estimated model should depend only on the system nature and not on the
amount of data available.
In Figure 3.3, the computational e�ciency of the LN1 solution cln1 is plotted, as
compared to the trivial one cT , when used for prediction on new points. As expected,
the LN1 solution is much more e�cient. This is true especially for high n, because
the complexity of the LN1 model does not increase with the number of data, while the
trivial model increases the computational time signi�cantly. However, it is important
to note that the solution LN1 is slower to compute especially with large datasets
because it requires to solve the optimization problem (3.34), as shown in Figure 3.4.
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Figure 3.2: Number of non-zero entries in the solution cln1 for 4 values of
n and 103 realizations of the noise.
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Figure 3.3: Computational time of the model on 5000 di�erent validation
points for the trivial solution cT and the LN1 solution cln1.
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Figure 3.4: Computational time needed to compute the trivial and the LN1
solution for 103 di�erent datasets.

3.4 A well-conditioned solution for
semi-supervised regression

In this section, we will consider again the case of degenerate kernels to select the solution
most suited for semi-supervised regression.

In this setting, the measurements vector y is only partially known. In particular, we will
assume that only ns ≤ n regressors have a known associated measurement. Following the
rationale described in Section 1.4.3 and in [11], the semi-supervised solution is given by:

ĝ = arg min
g∈Hk

{
J (g)

}
(3.35)

J (g) = ‖ys − gs‖22 + τ ‖g‖2k + µgMg> (3.36)

whereys and gs are, respectively, the parts ofy and g associated with known measurements
andM ∈ Rn×n is a positive semi-de�nite symmetric matrix [10, 11]. In particular, the third
term in (3.36) is called manifold regularization term and penalizes the functions that are not
smooth alongside the intrinsic regressors structure, as described in Section 1.4.3.

The Representer theorem holds also for the cost function (3.36) [11]. Therefore, ĝ can be
written as:

ĝ (x) = ĉ>k∗ (x) (3.37)

where ĉ can be found by minimizing the cost function:

Jc (c) =
∥∥∥y>s − PKc∥∥∥2

2
+ c> (τK + µKMK) c (3.38)

= c>Bc− 2c>b+ yy>, (3.39)

where:

B = KA ∈ Rn×n, (3.40)
A = PK + τIn + µMK ∈ Rn×n, (3.41)
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b = K

 y>s

0(n−ns)×1

 ∈ Rn×1, (3.42)

P =

 Ins 0ns×(n−ns)

0(n−ns)×1 0(n−ns)×(n−ns)

 ∈ Rn×n. (3.43)

Since Jc is a quadratic function, its stationary points can be computed analytically by solv-
ing the linear system:

Bc = b. (3.44)

This a generalization of the problem treated in previous sections. In particular, with ns = n
the matrix P becomes an identity matrix and (3.44) becomes equal to (3.16). For this reason
Theorem 3.1 and Theorem 3.2 needs to be generalized at the semi-supervised case. This is
achieved by the following theorems.

Theorem 3.3 (Degenerate solution - general case). Let

Sc =
{
c ∈ Rn×1|Bc = b

}
(3.45)

be the solution set of the linear system (3.44) and N
(
U>
)
be the null space of U>. If τ > 0,

then

a) Sc 6= ∅, i.e. the linear system (3.44) is consistent;

b) Sc is an a�ne space with dimension n−m;

c) given c1, c2 ∈ Sc, c1 − c2 ∈ N
(
U>
)
;

d) given c ∈ Sc is a global minimum of Jc.

Proof. See Section 3.6 on page 81. �

Theorem 3.4 (Equivalent solutions - general case). Let c1, c2 ∈ Sc and x ∈ X . If τ > 0,
then ĝc1 (x) = ĝc2 (x).

Proof. See Section 3.6 on page 82. �

Then, also in the semi-supervised framework, if the kernel is degenerate, there are in�nite
solutions with equivalent out-of-sample performance.

Now notice that, when τ is small, we have

rank
(
A
)

= rank (PK + µMK) (3.46)
= rank ((PK + µM)K) (3.47)
≤ rank (K) . (3.48)

Therefore,A may be singular and the trivial solution cT = A
−1
b may be ill-conditioned.

In this manuscript, we enhance the numerical conditioning of the solutions by relying on
numerical algebra techniques. More speci�cally, we propose to replace the trivial solution
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with the Least Norm 2 (LN2) solution de�ned as:

cln2 = arg min
c∈Rn×1

{‖c‖2} (3.49)

s.t. Bc = b (3.50)

This solution can be easily computed using the Complete Orthogonal Decomposition (COD) [52]
of the matrixB. As shown in Section 3.3, we can rewrite the linear system (3.44) as

RH
>
c = Q

>
b (3.51)

where R ∈ Rm×m, H ∈ Rn×m and Q ∈ Rn×m are the three matrices described in Sec-
tion 3.3 obtained using the Complete Orthogonal Decomposition (COD) on the matrix B.
Then, it is possible to obtain the LN2 solution by following Algorithm 3.1.

Algorithm 3.1: Computation of the LN2 solution
Input: The matrixB
Input: The vector b
Input: The threshold ε, tuned as described in the previous section

1 Compute the quadruple
(
Q,R,H, r

)
as the Complete Orthogonal Decomposition

(COD) ofB using the tolerance ε to determine the rank r of the matrixB
2 Compute c = Q

>
b

3 Solve for d the upper triangular linear systemRd = c

4 Compute the LN2 solution as cln2 = H d

Output: The vector cln2

The following illustrative example illustrates the e�ectiveness of the proposed LN2 solution
as compared to the trivial one.

Example 3.3: Semi-supervised regression using the LN2 solution

Consider the estimation of the function g : R2 → R such that

g (x1, x2) = 3c1 (x1, x2) e
−2

∣∣∣∣∣−1+
√
x21+

(
x2−1

5

)2∣∣∣∣∣
+

− 2c2 (x1, x2) e
−10

7

∣∣∣−1+√(x1−1)2+x22
∣∣∣ (3.52)

where:

c1 (x1, x2) =

1 −
π

5
≤ arctan2 (x2, x1) ≤

6π

5
0 otherwise

(3.53)

c2 (x1, x2) =

1
4π

5
≤ arctan2 (x2, x1) ≤

11π

5
0 otherwise

(3.54)

using a dataset
D = {(xi, yi) |1 ≤ i ≤ n} . (3.55)
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The regressors xi are equal to:

xi,1 = 1− pi +
(2pi − 1) (10 + ai)

10
cos

(
(1− 7bi)

π

5

)
(3.56)

xi,2 =
pi

5
−

(2pi − 1) (10 + ai)

10
sin

(
(1− 7bi)

π

5

)
(3.57)

where ai, bi and pi are random variables distributed as

ai ∼ N (0, 1) (3.58)
bi ∼ U (0, 1) (3.59)

pi ∼ Bernoulli
(

1

2

)
(3.60)

then the output are sampled according the model described in Equation (3.2) with
noises ei distributed as a normal distribution with 0 mean and variance η2 chosen in
order to have SNR equal to 1000.
The dataset contains n = 500 elements, but only ns = 12 of them are supervised. In
Figure 3.5, it is possible to see the function g and sample dataset generated according
to the distribution. Notice that the considered system has a particular regressors dis-
tribution πwith two distinct regions where the unknown function is continuous. For
this reason, manifold regularization can be employed to enforce smoothness along
the regions by using the unsupervised regressors.
The problem is tackled using the Gaussian kernel

k (a, b) = e−β‖a−b‖
2
2 (3.61)

andM is equal to the Laplacian matrix, constructed as explained in [11], with a fully
connected regressor graph that connects the nodes i and j with a edge weighted

wi,j = e−
2500
9 ‖xi−xj‖2 (3.62)

The hyper-parameters (β, τ, µ) are chosen via 3-fold cross-validation [44, 104], refer
to Section 1.5.1. The performance of the estimated functions is tested on a noiseless
dataset of 105 samples using the �t index

Fit = 1−

√∑10000
i=1 (ỹi − ĝ (x̃i))

2√∑10000
i=1

(
ỹi −

∑10000
i=1 ỹi

)2 (3.63)

where ĝ is the estimated function and

DV =
{

(xi, yi)| 1 ≤ i ≤ 105
}

(3.64)

is the validation dataset.
To assess the statistical properties of the method, a Monte Carlo simulation with
100 di�erent realizations of the noise is performed. In Figure 3.6, the performance
of the solution generated with Algorithm 3.1 with threshold ε = δ (‖B‖∞) is com-
pared with the one obtained using the trivial solution. The proposed approach clearly
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outperforms the one proposed in the literature. This is due to the fact that the opti-
mization procedure that searches the hyper-parameters converges to di�erent (better
conditioned) combinations of (β, τ, µ).
The slight increase of performance can be further assessed by looking at the residue

res (c) =
∥∥Bc− b∥∥

2
(3.65)

reported in Figure 3.7.
Finally, it turns out that the optimization procedure to �nd the hyperparameters
for the LN2 solution is much faster, see Figure 3.8. The latter observation is only
empirical and will be the object of further analysis. However, it de�nitely encourages
additional research on this topic.
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Figure 3.5: Function g of Example 3.3 (background color) and 100 regressor
samples (red asterisks).

3.5 Chapter concluding remarks
In many practical applications, kernel-based learning problems have to be solved by relying
on rank-de�cient kernel matrices. This fact is usually ignored because it is possible to �nd
a solution even if the kernel matrix is very ill-conditioned.

This work delves into the reasons behind this fact and analyzes the opportunities that arise
from this apparent issue. In particular, it is shown that there are multiple equivalent so-
lutions in term of out-of-sample performance and that it is possible to select one of them
to optimize some additional criteria. In particular, in this manuscript, we discuss the pos-
sibility of computing an equivalent sparse solution and a numerically better-conditioned
solution for semi-supervised regression.
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Figure 3.6: Fit of trivial and LN2 solutions for Example 3.3.

10
-12

10
-10

10
-8

Figure 3.7: Residue (3.65), of the trivial and LN2 solutions for Example 3.3.
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Figure 3.8: Number of iterations needed to converge to the optimal hyper-
parameters using the trivial and the LN2 solutions for Example 3.3.

In future research, other selection criteria will be dealt with to enforce speci�c properties
of the solutions without decreasing the out-of-sample performance. Further work will be
devoted to the optimization of the hyperparameters in the degenerate case.

3.6 Proofs
The proofs of all the theorems presented in this chapter are reported in this section.

Proof of Proposition 3.1. To prove this statement let us consider �rst the case when τ > 0.
Here, the matrixA is full-rank because its eigenvalues have to be greater than the one of τIn
and therefore they have to be greater than τ . Therefore, the matrixB is the multiplication
between a full-rank matrix and a second matrix. Therefore rank (B) = rank (K).

In the case where τ = 0, we have

B = KA (3.66)
= K (K + µMK) (3.67)
= K (In + µM)K (3.68)

since the matrix In + µM is positive de�nite, we can employ the Cholesky decomposi-
tion [52] In + µM = LL> in order to write

B = KLL>K (3.69)
= (KL) (KL)> (3.70)

therefore, the rank ofB is equal to the rank ofKL, whereL is a full rank matrix. Therefore,
B is full-rank. �
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Proof of Theorem 3.1. Using the eigen-decomposition [52] of the matrix K = UΛU>, the
matrixB can be rewritten as:

B = K (K + τIn + µMK) (3.71)

= UΛU>
(
UΛU> + τIn + µMUΛU>

)
(3.72)

= UΛ
(
U>UΛU> + τU> + µU>MUΛU>

)
(3.73)

= UΛ
(
Λ + τIm + µU>MUΛ

)
U> (3.74)

= UΛV U>, (3.75)

where V = Λ + τIm + µU>MUΛ ∈ Rm×m. The eigenvalues of V have to be greater
or equal to the smallest eigenvalues of Λ, see Theorem 8.1.5 in [52]. Since Λ is a diagonal
matrix whose diagonal elements are the strictly positive eigenvalues of K , V has only
strictly positive eigenvalues and, therefore, it is invertible for every non-negative value of
τ and µ.

From this fact and the eigen-decomposition of K , it is possible to rewrite the linear sys-
tem (3.16) as

Bc = b (3.76)
UΛV U>c = Ky> (3.77)

U>UΛV U>c = U>UΛU>y> (3.78)
ΛV U>c = ΛU>y> (3.79)

U>c = (ΛV )−1 ΛU>y> (3.80)
U>c = V −1U>y> (3.81)

This is a rectangular linear system with n variables and m equations that has the same
solutions set Sc as the one of (3.16). Since rank

(
U>
)

= m, for the Rouché-Capelli theo-
rem [113], point a) of the theorem is proven because the system (3.16) is consistent. The
same theorem states that the solution set Sc is an a�ne space with dimension equal to the
number of variables minus the rank of U>. Therefore its dimension is n − m, proving
point b) of the theorem.

To prove point c), let c1, c2 ∈ Sc. It holds that:

U> (c1 − c2) = U>c1 −U>c2 (3.82)
= V −1U>y> − V −1U>y> (3.83)
= 0m×1 (3.84)

Then, c1 − c2 ∈ N
(
U>
)
. Before proving point d), we need the following Lemma.

Lemma 3.1. Let N (B) be the null space of the matrixB. Then N
(
U>
)
⊆ N (B).

The proof of the Lemma is straightforward. Let x ∈ N
(
U>
)
. Then,

Bx = UΛV U>x︸ ︷︷ ︸
0m×1

= 0n×1. (3.85)

Therefore, x ∈ N (B) and N
(
U>
)
⊆ N (B).
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Now, to start with the proof of point d), let us �rst note that the Hessian matrix of Jc is
equal to B, ∀c ∈ Rn×1 ⊇ Sc, as the cost function is quadratic. Then, all the points inside
Sc share the same positive semi-de�ne Hessian matrix and are local minima. Consider now
two minima c1, c2 ∈ Sc and their di�erence w = c1 − c2 ∈ N

(
U>
)
.

Evaluating the cost function in c1 = c2 +w, we obtain:

Jc (c1) = c>1 Bc1 − 2c>1 b+ yy> (3.86)
= (c2 +w)>B (c2 +w)− 2 (c2 +w)> b+ yy> (3.87)
= c>2 Bc2 +w>Bc2 + c>2 Bw +w>Bw − 2c>2 b− 2w>b+ yy>. (3.88)

Since w ∈ N
(
U>
)
⊆ N (B), as shown in Lemma 3.1, all the terms that contains Bw, or

its transpose, are zero, obtaining:

Jc (c1) = c2Bc2 − 2c>2 b+ yy>︸ ︷︷ ︸
Jc(c2)

−2w>b (3.89)

= Jc (c2)− 2w>b. (3.90)

Furthermore, it can be noted that:

2w>b = 2w>Ky> = 2w>U︸ ︷︷ ︸
01×m

ΛU>y> = 0 (3.91)

obtaining Jc (c1) = Jc (c2). Since all the local minima share the same cost function value
and Jc is quadratic, they are all global minima. �

Proof of Theorem 3.3. Using the eigen-decompositionK = UΛU>,B can be rewritten as:

B = K (PK + τIn + µMK) (3.92)

= UΛU>
(
PUΛU> + τIn + µMUΛU>

)
(3.93)

= UΛ
(
U>PUΛU> + τU> ·+µU>MUΛU>

)
(3.94)

= UΛ
(
U>PUΛ + τIm + µU>MUΛ

)
U> (3.95)

= UΛ
(
U> (P + µM)UΛ + τIm

)
U> (3.96)

= UΛV U>, (3.97)

where V = U> (P + µM)UΛ + τIm ∈ Rm×m. If τ > 0, V is invertible. In fact, let us
�rst consider the case of τ > 0. V is the sum of a diagonal matrix τIm, whose diagonal ele-
ments and eigenvalues are strictly positive, and another matrix. Since the eigenvalues of V
have to be greater or equal than the smallest eigenvalue of τIm, as shown in Theorem 8.1.5
of [52], all the eigenvalues of V are strictly greater than 0. The proof can be completed by
following the same rationale employed in the proof of Theorem 3.1 (reported in Section 3.6
on 80), from Equation (3.76) on, with V instead of V . �
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Proof of Theorem 3.2. Using the Mercer decomposition (3.21), we can rewrite ĝc1 (x) and
ĝc2 (x) as

ĝc1 (x) = c>k∗ (x) = c>1 Φf (x) (3.98)
ĝc2 (x) = c>k∗ (x) = c>2 Φf (x) (3.99)

here Φ ∈ Rn×m is a matrix whose (i, j) entry is ϕj (xi) and f : X → Rm×1 is a function
such that f (x) =

[
σ21ϕ1 (x) , . . . , σ2mϕm (x)

]> ∈ Rm×1.

Therefore, their di�erence is

ĝc1 (x)− ĝc2 (x) = c>1 Φf (x)− c>2 Φf (x) (3.100)

=
(
c>1 − c>2

)
Φf (x) (3.101)

= w>Φf (x) (3.102)

where w = c1 − c2 ∈ N
(
U>
)
.

Since K = UΛU> and U and Λ are full-rank matrices, N
(
U>
)

= N (K). Using the
Mercer decomposition (3.21), the kernel matrix K can be written as K = ΦΣΦ>, where
Σ is a diagonal matrix whose elements are the eigenvalues σ2i of the the kernel. Since the
eigenfunction ϕi can be selected in order to be orthogonal with each other (with respect of
theL2 inner-product with the same measure used for the Mercer theorem, see Section 1.1.2),
the columns of the matrix Φ are orthogonal with each other and therefore Φ is a full rank
matrix. From this fact, it is possible to see that N (K) = N

(
Φ>
)

= N
(
U>
)
.

Therefore
ĝc1 (x)− ĝc2 (x) = w>Φf (x) = 0 (3.103)

and the two functions have the same value. �

Proof of Theorem 3.4. The proof follows the same line of that of Theorem 3.2 reported in
Section 3.6 on 82. �
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CHAPTER 4

Kernel-based continuous-time
linear system identification

This chapter introduces a method that employs kernel-based learning for the identi�cation
of continuous-time linear systems. The proposed algorithm is a non-parametric method
and it identi�es directly the transfer function of the system under exam. Since the method
is designed for the identi�cation of continuous-time linear systems, it can also work with
irregularly sampled data.

This new method is an expansion of the algorithm, described in details in [95] and Sec-
tion 2.2, that employs the RKHS theory to identi�es the impulse response of the system
from data. In particular, these kernel-methods limit themselves to the identi�cation of a
non-parametric impulse response function that has limited practical application. For this
reason, in the literature, these methods are often used in conjunction with a method that
can approximate the identi�ed impulse response with a transfer function with a certain
order [32]. Instead, the proposed method computes a non-parametric identi�ed transfer
function with an automatically selected order.

This chapter provides, also, some analysis about the stability of the identi�ed model and
it �nishes with a numerical simulation that shows the performance of the method with
respect to the state of the art methods for continuous-time system identi�cation [46].

This chapter is organized as follow:

• Section 4.1 brie�y refreshes the notions introduced in Section 2.2 about the impulse
response identi�cation;

• Section 4.2 explains how to select the various hyper-parameters of the proposed
method;

• Section 4.3 contains an in-depth view on the stable-spline kernel that is used through-
out the chapter;

• Section 4.4 discusses some important remarks on the computation of the derived ker-
nel;

• Section 4.5 explains how to convert the impulse response identi�cation to the non-
parametric transfer function;
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• Section 4.6 illustrates how to make the identi�ed transfer function rational;

• Section 4.7 delves into the problems that arises when complex excitation signal are
used in the experiment;

• Section 4.8 contains a brief summary of the proposed identi�cation algorithm;

• Section 4.9 presents some numerical results of the proposed method compared with
other methods;

• Section 4.10 contains the proofs of all the various theorems.

4.1 Non-parametric impulse response
identification

Consider the continuous causal LTI system Ğ with impulse response ğ : R → R, then the
input/output relation of Ğ is

y (t) = [ğ ? u] (t) =

+∞∫
0

ğ (ξ)u (t− ξ) dξ (4.1)

where u : R+ → R and y : R+ → R are, respectively, the input and the output signal. In
the Laplace domain, this relation becomes

Y (s) = Ğ (s)U (s) (4.2)

where U (s) = L [u] (s), Y (s) = L [y] (s) and Ğ (s) = L [ğ] (s) is the transfer function of
the system Ğ .

Now, suppose to have at your disposal a dataset containing n ∈ N\{0} noisy measurements
obtained with an experiment on the plant

D = {(ti, yi) , 1 ≤ i ≤ n} (4.3)

distributed according to the probabilistic model

yi = [ğ ? u] (ti) + ei i = 1, . . . , n (4.4)

where ei ∼ N
(
0, η2

)
are IID output-error Gaussian distributed noises and u : R+ → R is

the known input excitations used during the experiment. For simplicity, we assume that

Assumption 4.1. The time-instants ti are in chronological order, i.e. ti ≥ ti−1, i = 1, . . . , n.

Assumption 4.2. The excitation signal u (t) is applied to the plant at the time instant d ∈ R,
i.e. u (t) = 0, ∀t < d.

Both these assumptions are not restrictive. The �rst one imposes only a certain order of the
dataset that is usually naturally respected and the second one assumes that the experiment
on the system started on a certain time-instant d, as it is always done in a real case.
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Following the rationale reported in [32, 95, 96] and described in Section 2.2, we can estimate
ğ with the estimator

ĝ = arg min
g∈Hk

{J (g)}

J (g) =

n∑
i=1

(yi − [g ? u] (ti))
2 + τ ‖g‖2H

(4.5)

where H is an RKHS with kernel k : R+ × R+ → R, τ is a positive scalar and ‖·‖H is
the induced norm of the space H. The �rst term of the cost function J is a loss term that
becomes smaller when the model has a good �t on the dataset, while the second one is a
regularization term that penalizes more complex models.

As shown in [40], this estimator can be written as

ĝu (t) =
n∑
i=1

ciĝ
u
i (t) (4.6)

where the dependency on the input u is highlighted and

ĝui (t) =

∞∫
0

u (ti − ξ) k (t, ξ) dξ (4.7)

and where the coe�cients vector c = [c1, c2, . . . , cn]> ∈ Rn×1 can be found by solving the
linear system

O (O + τIn) c = Oy> (4.8)

where y = [y1, y2, . . . , yn] ∈ R1×n and O ∈ Rn×n is a symmetric positive-de�nite matrix
whose (i, j) element is

Oi,j = ou (ti, tj) (4.9)

where

ou (ti, tj) =

+∞∫
0

u (ti − ψ)

 +∞∫
0

u (tj − ξ) k (ψ, ξ) dξ

 dψ (4.10)

For additional details, see Section 2.2.

4.2 Hyper-parameters selection
The before-mentioned algorithm requires the tuning of three hyper-parameters: the regu-
larization strength τ and the kernel hyper-parameters ψ ∈ Rnψ×1.

To select them, it is useful to introduce the Bayesian interpretation of the method. The
model described in (4.4) gives us the likelihood distribution p (y|g, ζ) where ζ =

[
ψ>, τ

]> ∈
Rnζ×1. Imposing a Gaussian stochastic process prior on the impulse response p (g|ζ) al-
lows obtaining a posterior p (g|y, ζ) whose mean is equal to the estimator (4.6), as shown
in [95].

From this di�erent point of view, it is possible to compute the marginal likelihood pdf

p (y|ζ) =

∫
p (y|g, ζ) p (g|ζ) dg (4.11)
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= N
(
y>|0n×1,O + τIn

)
. (4.12)

This distribution represents the likelihood to have a certain set of measurements y given
a certain value of the hyper-parameters ζ. For this reason, it is possible to select ζ by
searching the one that maximizes the likelihood to have the set of measurements at our
disposal. Therefore:

ζ̂ = arg min
ζ∈Rnζ

{
y (O + τIn)−1 y> + log det (O + τIn)

}
(4.13)

where, instead of the maximization of p (y|ζ), the negative log-pdf of p (y|ζ) is minimized
for computational reason, as explained in Section 1.5.

4.3 Kernel selection
The performance of the estimator ĝu heavily depends on the kernel used. In particular,
most kernels are not suitable for this application because they de�ne spaces that contain
functions that correspond to unstable systems as shown in Section 2.1 and in [95].

To solve this problem, it is necessary to use a so-called stable kernel [95]. An example of
this kind of kernel is the stable-spline [95] kq : R+ × R+ → R that is de�ned as:

kq (a, b) = λsq

(
e−βa, e−βb

)
(4.14)

where q ∈ N \ {0} is the stable-spline order, β and λ are two strictly positive scalar hyper-
parameters to tune and sq : [0, 1]× [0, 1]→ R is the regular spline kernel of order q [131],
i.e.

sq (a, b) =

1∫
0

Gq (a, x)Gq (b, x) dx (4.15)

where

Gq (a, x) =
1

(q − 1)!

{
(a− x)q−1 if a ≥ x
0 if a < x

(4.16)

Remark 4.1. The λ hyper-parameter is related to the static gain of the system at hand,
while β de�ne its bandwidth.

In the literature it is possible to �nd other stable kernels like the continuous DC kernel [32]
(see [30] for a detailed analysis on how to select the right stable-kernel). However, in this
thesis, the focus will be on the stable-spline kernel because they are general enough and
they are the most used kernels for this of problem due to their �exibility and properties.

In order to have a more clean formulation of the stable spline kernel, we can consider the
following theorem and its corollary.

Theorem 4.1. The spline kernel sq : [0, 1]× [0, 1]→ R of order q can be written as:

sq (a, b) =

q−1∑
h=0

γq,h

{
a2q−h−1bh if a ≤ b
b2q−h−1ah if a > b

(4.17)
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where

γq,h =
(−1)q+h−1

h! (2q − h− 1)!
(4.18)

Proof. See Section 4.10 on page 112. �

Corollary 4.1. The stable-spline kernel kq : R+ × R+ → R of order q can be written as:

kq (a, b) = λ

q−1∑
h=0

γq,h

{
e−β[(2q−h−1)a+hb] if a ≥ b
e−β[(2q−h−1)b+ha] if a < b

(4.19)

Proof. See Section 4.10 on page 117. �

From Corollary 4.1, we can see that the stable-spline kernel of order q is a weighted sum
of q negative exponential terms. For this reason, the stable-spline kernel is easily com-
putable for every order and the order q can be treated as an additional hyper-parameter, i.e.
ζ = [λ, β, τ, q]. If this is the case, the optimization of (4.13) becomes a mixed real-integer
optimization problem that requires suitable techniques. An easy solution for this problem
is to select the order q with an exhaustive search from a certain pool of values.

4.4 Computation of the new derived kernel
The method described in Section 4.1 requires a way to compute the derived kernel ou as
de�ned in (4.10). Looking at the de�nition and remembering the Assumption 4.2, we can
note that

• if ti ≤ d then u (ti − ψ) = 0, ∀ψ ∈ R+ and therefore o (ti, tj) = 0;

• if tj ≤ d then u (tj − ξ) = 0, ∀ξ ∈ R+ and therefore o (ti, tj) = 0.

Now, let us assume that there are nz ≥ 0 time instants ti such that ti ≤ d, then the matrix
O becomes

O =

 0nz×nz 0nz×n−nz

0n−nz×nz Õ

 ∈ Rn×n (4.20)

where Õ ∈ Rn−nz×n−nz is the kernel matrix obtained using only the time instants ti > tnz .
From this expression, it is clear that the matrixO has nz rows equals to 01×n and therefore
rank [O] ≤ n − nz ≤ n. For this reason, the linear system (4.8) is a singular system and
does not have a unique solution. This kind of problem is tackled in detail in Chapter 3, but
in this special case that we can treat di�erently.

In particular, the linear system (4.8) becomes 0nz×nz 0nz×n−nz

0n−nz×nz Õ

 τInz×nz 0nz×nz−z

0n−nz×nz Õ + τInz−z

 c1
c2

 =

 0nz×nz 0nz×n−nz

0n−nz×nz Õ

 y>1
y>2

 (4.21)

where c1 ∈ Rnz×1 and y1 ∈ R1×nz are, respectively, the vector with the �rst nz elements
of c and y and c2 ∈ Rn−nz×1 and y2 ∈ R1×n−nz are the other parts of the vectors c and y.



88 Chapter 4. Kernel-based continuous-time linear system identi�cation

With some mathematical steps, we can write 0nz×1

Õ
(
Õ + τIn−nz

)
c2

 =

 0nz×1

Õy>2

 (4.22)

From this formulation, it is possible to note that the equality is veri�ed for every value of
c1 ∈ Rnz×1. For this reason, we can set c1 = 0nz×1 in order to reduce the computational
complexity of the estimated model, as shown in Section 3.3. The other part of c can be
computed by solving the linear system

Õ
(
Õ + τIn−nz

)
c2 = Õy>2 (4.23)

If the �rst nz samples of the dataset D are discarded, then this new linear system will be
equivalent to the one in (4.8). For this reason, for the rest of the chapter, the following
Assumption is considered respected.

Assumption 4.3. All the time instants ti in the dataset D are strictly greater than d, i.e.
ti > d for i = 1, . . . , n.

Remark 4.2. If the original dataset does not respect this assumption then it is always pos-
sible to create a new dataset that respects it by discarding the data with time instants ti ≤ d
without losing any information.

Remark 4.3. The Assumption 4.3 is due to the causality of the LTI system under analysis.
In fact, the samples taken before the injection of the input signal carries no information
about the response of the input.

The formula (4.10) for the computation of the derived kernel needs to be computed analyt-
ically and change for every combination of input signal u (t) and kernel used k. For some
combination, this can be a long and not trivial task. If the kernel used is a stable-spline of
order q, we can simplify this task by employing the following theorem.

Theorem 4.2. Let:

• the kernel k be a stable-spline of order q;

• u : R→ R be an input signal such that it respects Assumption 4.2;

Then the derived kernel is equal to

ouq (ti, tj) = λ

q−1∑
h=0

γq,h

{
ruq,h (ti, tj) + wuq,h (ti, tj) ti ≤ tj
ruq,h (tj , ti) + wuq,h (tj , ti) ti > tj

(4.24)

where

ruq,h (ti, tj) =

ti∫
d

tj−ti+ξ∫
d

u (ξ)u (ψ) e−β[(2q−h−1)(tj−ψ)+h(ti−ξ)] dψ dξ (4.25)

wuq,h (ti, tj) =

ti∫
d

tj∫
tj−ti+ξ

u (ξ)u (ψ) e−β[(2q−h−1)(ti−ξ)+h(tj−ψ)] dψ dξ (4.26)

Proof. See Section 4.10 on page 118. �
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4.5 Transfer function estimation
For practical applications, like control design and behavior analysis, a non-parametric im-
pulse response is not as useful as the transfer function representation. For this reason, the
estimator ĝu, as de�ned in (4.6), is not practical. Therefore, it is useful to compute the
corresponding transfer function Ĝu.

Theorem 4.3. Given the non-parametric estimator ĝu, as explained in (4.6), of an LTI system,
the corresponding transfer function is

Ĝu (s) =

n∑
i=1

ciĜ
u
i (s) (4.27)

where

Ĝui (s) =

ti∫
d

u (x)K (s; ti − x) dx (4.28)

and

K (s;x) =

∞∫
0

k (t, x) e−sτ dt (4.29)

Proof. See Section 4.10 on page 120. �

From this Theorem, it is possible to note that the estimated transfer function is composed by
the convolution of two terms: the �rst one u (x) depends only on the shape of the excitation
signal while the second one K (s; ti − x) depends only on the kernel used.

For the stable-spline kernel of generic order q, it is possible to compute a more informative
formulation thanks to the following theorem.

Theorem 4.4. Let the kernel be a stable-spline kq of order q. The identi�ed transfer function
can be written as

Ĝu (s) = λ

[
q−1∑
h=0

Quq,h (s) +Hu
q (s)

]
(4.30)

where

Quq,h (s) =
γq,h

s+ βh

(
n∑
i=1

ciA
u
i (β (2q − h− 1))

)
(4.31)

Hu
q (s) =

(−1)q β2q−1∏2q−1
i=0 (βi+ s)

(
n∑
i=1

ciA
u
i (s+ β (2q − 1))

)
(4.32)

and

Aui (x) =

ti∫
d

u (t) ex(t−ti) dt (4.33)

Proof. See Section 4.10 on page 121. �

Here, it is clear that the estimated transfer function is a sum of q+1 transfer functions. The
�rst q of them have one real pole located in a multiple of the−β and a gain that depends on
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the coe�cients c, the hyper-parameters λ and β, the spline order and the shape of the input
signal u (t). The last one is more complicated. It has 2q − 1 real poles that are multiple of
−β and, eventually, other poles that depend on the shape of the input u (t). In particular,
the transfer function Aui (s+ β (2q − 1)) can have some poles or zeros that will be added
to Ĝu. For this reason, to evaluate the stability of the identi�ed system it is necessary to
impose a condition on the excitation signal. This is achieved by the following theorem.

Theorem 4.5. If the input signal u (t) is such that Aui (s+ β (2q − 1)) is a transfer function
whose poles are all strictly negative for i = 1, . . . , n, then Ĝu (s) is an asymptotically stable
transfer function.

Proof. See Section 4.10 on page 124. �

From this Theorem, it is clear that the terms

Aui (s+ β (2q − 1)) i = 1, . . . , n (4.34)

have an important role in the identi�cation procedure and on the stability of the identi�ed
model. It is also important to note that the identi�ed model is always at least BIBO stable
because the stable-spline kernel is a stable kernel, as shown in [95] and in Section 2.2. In the
author experience, the condition imposed by the theorem is not very restrictive. For a better
understanding, in the following subsection, some common input signals are analyzed.

4.5.1 Impulse input
Let u (t) be a Dirac delta

u (t) = δ (t− d) . (4.35)

In this case, using Assumption 4.3, we have:

Aui (x) =

ti∫
d

δ (t− d) ex(t−ti) dt = ex(d−ti) = e−x(ti−d) (4.36)

Stability check From (4.36), it is straightforward to check the condition of Theorem 4.5.
In particular, we have:

Aui (s+ β (2q − 1)) = e−(s+β(2q−1))(ti−d) = e−s(ti−d)e−β(2q−1)(ti−d) (4.37)

this is an input-output delay with a certain gain and therefore it is asymptotically stable
and Theorem 4.4 condition is respected for every value of the hyper-parameters.

Identi�ed transfer function Applying Theorem 4.4 and using (4.36), it is straightfor-
ward to compute the identi�ed transfer function Ĝu. In particular, we have:

Quq,h (s) =
γq,j

s+ βh

(
n∑
i=1

ciA
u
i (β (2q − h− 1))

)
(4.38)

=
γq,j

s+ βh

(
n∑
i=1

cie
−β(2q−h−1)(ti−d)

)
(4.39)
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Hu
q (s) =

(−1)q β2q−1∏2q−1
i=0 (βi+ s)

(
n∑
i=1

ciA
u
i (s+ β (2q − 1))

)
(4.40)

=
(−1)q β2q−1∏2q−1
i=0 (βi+ s)

(
n∑
i=1

cie
−β(2q−1)(ti−d)e−s(ti−d)

)
(4.41)

In this case, the transfer function Hu
q (s) is not rational. In particular, the numerator is

composed of a sum of weighted input-output delays. To highlight this fact, we can de�ne

T uq (s) =

n∑
i=1

cie
−β(2q−1)(ti−d)e−s(ti−d) (4.42)

in order to isolate the non-rational part of Hu
q (s).

Hu
q (s) =

(−1)q β2q−1∏2q−1
i=0 (βi+ s)

T uq (s) (4.43)

Remark 4.4. The input-output delays in T uq (s) are all actual delays and not advances
because ti − d > 0 for i = 1 . . . n thanks to Assumption 4.3.

4.5.2 Step input
Let u (t) be a step

u (t) =

{
1 if t ≥ d
0 if t < d

(4.44)

In this case, using Assumption 4.3, we have:

Aui (x) =

ti∫
d

u (t) ex(t−ti) dt (4.45)

= e−xti

ti∫
d

ext dt (4.46)

= e−xti

[
ext

x

]ti
d

(4.47)

= e−xti
exti − exd

x
(4.48)

=
1− e−x(ti−d)

x
(4.49)

Stability check From (4.49), it is straightforward to check the condition of Theorem 4.5.
In particular, we have:

Aui (s+ β (2q − 1)) =
1− e−(s+β(2q−1))(ti−d)

s+ β (2q − 1)
(4.50)

=
1

s+ β (2q − 1)
− e−s(ti−d)

e−β(2q−1)(ti−d)

s+ β (2q − 1)
(4.51)
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this is a sum of two transfer functions, the second one with a input-output delay, that share
the same pole in

p = −β (2q − 1) (4.52)

since q ∈ N, q ≥ 1 and β > 0, this pole is strictly negative for every value of the hyper-
parameters.

Identi�ed transfer function Applying Theorem 4.4 and using (4.49), it is straightfor-
ward to compute the identi�ed transfer function Ĝu.

Quq,h (s) =
γq,h

s+ βh

(
n∑
i=1

ciA
u
i (β (2q − h− 1))

)
(4.53)

=
γq,h

s+ βj

(
n∑
i=1

ci
1− e−β(2q−h−1)(ti−d)

β (2q − h− 1)

)
(4.54)

=
γq,h

β (2q − h− 1) (s+ βh)

(
n∑
i=1

ci

(
1− e−β(2q−h−1)(ti−d)

))
(4.55)

Hq (s) =
(−1)q β2q−1∏2q−1
i=0 (βi+ s)

(
n∑
i=1

ciA
u
i (s+ β (2q − 1))

)
(4.56)

=
(−1)q β2q−1∏2q−1
i=0 (βi+ s)

(
n∑
i=1

ci
1− e−(s+β(2q−1))(ti−d)

(s+ β (2q − 1))

)
(4.57)

=
(−1)q β2q−1

(s+ β (2q − 1))
∏2q−1
i=0 (βi+ s)

(
n∑
i=1

ci −
n∑
i=1

cie
−β(2q−1)(ti−d)e−s(ti−d)

)
(4.58)

=
(−1)q β2q−1

(s+ β (2q − 1))
∏2q−1
i=0 (βi+ s)

(
n∑
i=1

ci − T uq (s)

)
(4.59)

here, we can note that the transfer function Hu
q (s) contains a non-rational term T uq (s)

similar to the impulse excitation analyzed before.

4.5.3 Monomial input
Let u (t) be a generic monomial of order v ∈ Z

u (t) =

{
tv if t ≥ d
0 if t < d

(4.60)

Remark 4.5. This is a signal that generalizes some of the most common excitations. For
example:

• with v = 0 this a step;

• with v = 1 this a ramp;

• with v = 2 this a parable;

and so on.
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In this case, using Assumption 4.3, we have:

Aui (x) =

ti∫
d

u (t) ex(t−ti) dt (4.61)

= e−xti

ti∫
d

tvext dt (4.62)

= e−xti

[
ext

xv+1
Pv (xt)

]ti
d

(4.63)

where Pv (h) is a polynomial of grade v that is de�ned as

Pv (h) = v!
v∑
z=0

(−1)v+z

z!
hz (4.64)

the integral Aui (x) is, then, equal to

Aui (x) = e−xti

[
exti

xv+1
Pv (xti)−

exd

xv+1
Pv (xd)

]
(4.65)

=
Pv (xti)

xv+1
− e−x(ti−d)

Pv (xd)

xv+1
(4.66)

Stability check From (4.66), it is straightforward to check the condition of Theorem 4.5.
In particular, we have:

Aui (s+ β (2q − 1)) =
Pv ((s+ β (2q − 1)) ti)

(s+ β (2q − 1))v+1 +

− e−(s+β(2q−1))(ti−d)
Pv ((s+ β (2q − 1)) d)

(s+ β (2q − 1))v+1

(4.67)

this result is similar to the one obtained in the previous case. It is the sum of two transfer
functions, one of them with an input-output delay, that share the same poles. In this case,
there are v + 1 poles in

p1,2,...,v+1 = −β (2q − 1) (4.68)

since q ∈ Z, q ≥ 1 and β > 0, these poles are strictly negative for every value of the
hyper-parameters.

Remark 4.6. Since Pv (h) is a polynomial of grade v, the numerators of the two transfer
functions is a polynomial in s of grade v. Therefore, there are v zeros and v + 1 poles.

Identi�ed transfer function Applying Theorem 4.4 and using (4.66), it is straightfor-
ward to compute the identi�ed transfer function Ĝu (some straightforward mathematical
steps are skipped for space sake).

Quq,h (s) =
γq,h

s+ βh

n∑
i=1

ciA
u
i (β (2q − h− 1)) (4.69)
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= γq,h

∑n
i=1 ciPv (β (2q − h− 1) ti)

(s+ βh) (β (2q − h− 1))v+1 + (4.70)

−
Pv (β (2q − h− 1) d)

∑n
i=1 cie

−β(2q−h−1)(ti−d)

(s+ βh) (β (2q − h− 1))v+1 (4.71)

Hu
q (s) =

(−1)q β2q−1∏2q−1
i=0 (βi+ s)

(
n∑
i=1

ciA
u
i (s+ β (2q − 1))

)
(4.72)

= (−1)q β2q−1

( ∑n
i=1 ciPv ((s+ β (2q − 1)) ti)

(s+ β (2q − 1))v+1∏2q−1
i=0 (βi+ s)

(4.73)

−
Pv ((s+ β (2q − 1)) d)T uq (s)

(s+ β (2q − 1))v+1∏2q−1
i=0 (βi+ s)

)

here, it is clear that, once again, the transfer function Hu
q (s) depends on a non-rational

term T uq (s) composed by a weighted sum of input-output delays.

4.5.4 Sinewave input
Let u (t) be a sinewave

u (t) =

{
sin (ωt+ ϕ) if t ≥ d
0 if t < d

(4.74)

where ω ∈ R with ω > 0 is the rotational velocity and ϕ ∈ R is the phase.

In this case, using Assumption 4.3, we have:

Aui (x) =

ti∫
d

u (t) ex(t−ti) dt (4.75)

= e−xti

ti∫
d

sin (ωt+ ϕ) ext dt (4.76)

= e−xti

[
etx (x sin (ωt+ ϕ)− ω cos (ωt+ ϕ))

ω2 + x2

]ti
d

(4.77)

= e−xti

[
etix (x sin (ωti + ϕ)− ω cos (ωti + ϕ))

ω2 + x2
+ (4.78)

−
edx (x sin (ωd+ ϕ)− ω cos (ωd+ ϕ))

ω2 + x2

]

=
x sin (ωti + ϕ)− ω cos (ωti + ϕ)

ω2 + x2
+ (4.79)

−
e−x(ti−d) (x sin (ωd+ ϕ)− ω cos (ωd+ ϕ))

ω2 + x2
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Stability check From (4.79), it is straightforward to check the condition of Theorem 4.5.
In particular, we have:

Aui (s+ β (2q − 1)) =
(s+ β (2q − 1)) sin (ωti + ϕ)− ω cos (ωti + ϕ)

ω2 + (s+ β (2q − 1))2

− e−s(ti−d)
e−β(2q−1)(ti−d) ((s+ β (2q − 1)) sin (ωd+ ϕ)− ω cos (ωd+ ϕ))

ω2 + (s+ β (2q − 1))2

(4.80)

again this is the sum of two transfer functions that share the same poles in

p1,2 = (2q − 1)β ± jω; (4.81)

following the same reasoning used for the other input, we can see that these poles have
always a strictly negative real part equal to (2q − 1)β.

Identi�ed transfer function Applying Theorem 4.4and using (4.79), it is straightfor-
ward to compute the identi�ed transfer function Ĝu (some straightforward mathematical
steps are skipped for space sake).

Quq,h (s) =
γq,j

s+ βh

n∑
i=1

ciA
u
i (β (2q − h− 1)) (4.82)

=
γq,hβ (2q − h− 1)

∑n
i=1 ci sin (ωti + ϕ)− ω

∑n
i=1 ci cos (ωti + ϕ)(

ω2 + β2 (2q − h− 1)2
)

(s+ βh)
+

−
γq,jβ (2q − h− 1) (β (2q − h− 1) sin (ωd+ ϕ)− ω cos (ωd+ ϕ)) e−β(2q−h−1)(ti−d)(

ω2 + β2 (2q − h− 1)2
)

(s+ βh)

(4.83)

Hq (s) =
(−1)q β2q−1∏2q−1
i=0 (βi+ s)

(
n∑
i=1

ciA
u
i (s+ β (2q − 1))

)
(4.84)

= (−1)q β2q−1
(s+ β (2q − 1))

∑n
i=1 ci sin (ωti + ϕ)− ω

∑n
i=1 ci cos (ωti + ϕ)(

ω2 + (s+ β (2q − 1))2
)∏2q−1

i=0 (βi+ s)

− (−1)q β2q−1
((s+ β (2q − 1)) sin (ωd+ ϕ)− ω cos (ωd+ ϕ))T ui (s)(

ω2 + (s+ β (2q − 1))2
)∏2q−1

i=0 (βi+ s)
(4.85)

Even in this case, the transfer function Hq (s) contains the non-rational term T uq (s) com-
posed by a sum of weighted input-output delays.
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4.5.5 Negative exponential input
Let u (t) be a negative exponential

u (t) =

{
e−bt if t ≥ d
0 if t < d

(4.86)

where b ∈ R with b > 0 is the decay velocity over time.

In this case, using Assumption 4.3, we have:

Aui (x) =

ti∫
d

u (t) ex(t−ti) dt (4.87)

= e−xti

ti∫
d

e−btext dt (4.88)

= e−xti

[
e(x−b)t

x− b

]ti
d

(4.89)

= e−xti

[
e(x−b)ti − e(x−b)d

x− b

]
(4.90)

=
e−bti

x− b
−
e−x(ti−d)

x− b
(4.91)

Stability check From (4.91), it is straightforward to check the condition of Theorem 4.5.
In particular, we have:

Aui (s+ β (2q − 1)) =
e−bti

s+ β (2q − 1)− b
−

e−x(ti−d)

s+ β (2q − 1)− b
(4.92)

=
e−bti

s+ β (2q − 1)− b
− e−s(ti−d)

e−β(2q−1)(ti−d)

s+ β (2q − 1)− b
(4.93)

again this is the sum of two transfer functions that share the same pole in

p = b− β (2q − 1) ; (4.94)

this pole is strictly negative if and only if:

β >
b

2q − 1
(4.95)

therefore, the identi�ed transfer function is not guaranteed to be asymptotically stable for
every value of the hyper-parameters. In particular, we have to respect the condition (4.95).

Identi�ed transfer function Applying Theorem 4.4 and using (4.91), it is straightfor-
ward to compute the identi�ed transfer function Ĝu.
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Quq,h (s) =
γq,j

s+ βh

n∑
i=1

ciA
u
i (β (2q − h− 1)) (4.96)

=
γq,h

s+ βh

n∑
i=1

ci

(
e−bti

β (2q − h− 1)− b
−

e−β(2q−h−1)(ti−d)

β (2q − h− 1)− b

)
(4.97)

=
γq,h

(β (2q − h− 1)− b) (s+ βh)

n∑
i=1

ci

(
e−bti − e−β(2q−h−1)(ti−d)

)
(4.98)

Hu
q (s) =

(−1)q β2q−1∏2q−1
i=0 (βi+ s)

(
n∑
i=1

ciA
u
i (s+ β (2q − 1))

)
(4.99)

=
(−1)q β2q−1∏2q−1
i=0 (βi+ s)

n∑
i=1

ci

(
e−bti

s+ β (2q − 1)− b
− e−s(ti−d)

e−β(2q−1)(ti−d)

s+ β (2q − 1)− b

)
(4.100)

=
(−1)q β2q−1

∑n
i=1 cie

−bti

(s+ β (2q − 1)− b)
∏2q−1
i=0 (βi+ s)

+ (4.101)

−
(−1)q β2q−1

∑n
i=1 cie

−s(ti−d)e−β(2q−1)(ti−d)

(s+ β (2q − 1)− b)
∏2q−1
i=0 (βi+ s)

=
(−1)q β2q−1

∑n
i=1 cie

−bti

(s+ β (2q − 1)− b)
∏2q−1
i=0 (βi+ s)

(4.102)

− (−1)q β2q−1

(s+ β (2q − 1)− b)
∏2q−1
i=0 (βi+ s)

T uq (s)

here, we can see that Hu
q (s) depends on the non-rational term T uq (s).

4.6 Padé approximant for a weighted sum of
delays

In the various examples analyzed before (in Subsections 4.5.1, 4.5.2, 4.5.3, 4.5.4 and 4.5.5), the
identi�ed transfer function is not rational. In particular, all these models contain a term that
is a weighted sum of n input-output delays. For this reason, we can consider the following
non-parametric transfer function

T (s) =
n∑
i=1

αie
−s(ti−d) (4.103)

where αi ∈ R, with i = 1, . . . , n, are coe�cients that depend on the input used and the
stable-spline order.

These type of transfer functions are not very easy to manage and, in general, classical di-
mensional reduction algorithms, such as the balance reduction [126], does not work on these
type of models. For this reason, it is useful to develop a way to �nd a rational approximation
T̃ (s) of T (s). This is achieved using a Padé approximant [90].
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The padé approximant of a time delay transfer function, i.e. e−sτ is well known and stud-
ied [3, 67], but, in this case, we need to approximate a weighted sum of delays. In general, the
sum of the Padé approximation is not the Padé approximant of the sum. For this reason, it
is convenient to derive the Padé approximant for the non-rational transfer function (4.103).
This is achieved by the following Theorem.

Theorem 4.6. Given the function T (s), as introduced in (4.103), then its Padé approximant
centered around 0 with z ∈ N \ {0} poles and z zeros is given by:

T̃ (s) =
N (s)

D (s)
=

∑z
j=0 nj · sj

1 +
∑z

j=1 dj · sj
(4.104)

where the coe�cients n = [n0, . . . , nz] ∈ Rz+1×1 and d = [d1, . . . , nz] ∈ Rz×1 can be
computed as

d = A−1b2 (4.105)
n = b1 +Ld (4.106)

where

A =


az az−1 · · · a1

az+1 az · · · a2
...

...
...

...

a2z−1 a2z−2 · · · az

 ∈ Rz×z (4.107)

L =



0 0 0 0

a0 0 0 0

a1 a0 0 0
...

...
...

...

az−1 az−2 · · · a0


∈ Rz+1×z (4.108)

b1 =
[
a0 a1 · · · az

]>
∈ Rz+1×1 (4.109)

b2 = −
[
az+1 az+2 · · · a2z

]>
∈ Rz×1 (4.110)

and

aj =
1

j!

n∑
i=1

αi (d− ti)j ∈ R (4.111)

Proof. See Section 4.10 on page 125. �

Remark 4.7. More generally, it is possible to compute the Padé approximant with a di�er-
ent number of zeros and poles, but for this particular application is not strictly necessary
to generalize to this case.

Remark 4.8. The denominator coe�cients are computed by solving the square linear sys-
tem (4.105) of order z. This is a Toeplitz system and it can be solved e�ciently with the
Levinson algorithm [52] or some of its variants [38, 134] that have a quadratic computa-
tional complexity, i.e. O

(
z2
)
.
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In order to compute this approximation, we need to select the number of poles z of the
approximant. In Theorem 1.1.1 of [7], it is shown that:

T (s)− T̃ (s) = o
(
s2z+1

)
(4.112)

therefore, larger z de�nes better approximation around 0. However, larger orders create
larger systems (4.105) and the system (4.105) tends to becomes ill-conditioned and there-
fore hard to solve reliably. For this reason, there is a trade-o� between the approximant
performance and its computation. A second problem is the stability of approximant be-
cause, in this procedure, there is no guarantee that T̃ (s) is stable for every number of poles
z. The solution to these problems is left for future research. Here, the author proposes the
trivial Algorithm 4.1, based on trial and error, to select this parameter.

Algorithm 4.1: Compute Padé approximant
Input: bi with i = 1, . . . , n
Input: ci with i = 1, . . . , n
Input: zopt ∈ N \ {0}

1 cont← True;
2 z ← zopt;
3 while cont do
4 Compute d and n with z poles using the coe�cients bi and ci;
5 if T̃ (s) is asymptotically stable then
6 cont← False;
7 else
8 z ← z − 1;
9 end if

10 end while

Output: The vector d
Output: The vector n

To show the performance of this approximation, consider the following example.

Example 4.1: Padé approximant of a toy example

Consider the case where the input is a step signal, then the non-rational part is equal
to

T uq (s) =

n∑
i=1

cie
−β(2q−1)(ti−d)e−s(ti−d) (4.113)

Suppose that, after the identi�cation procedure, we obtain:

q = 2 (4.114)
n = 5 (4.115)
d = 0 (4.116)

t =
[

0.25 0.38 0.62 0.85 1
]
∈ R1×5 (4.117)

c =
[

6 −5 3 1 −2
]
∈ R1×5 (4.118)
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If we feed this system with an input signal ū (t) the output is

ŷ (t) =
n∑
i=1

cie
−3ti ū (t− ti) (4.119)

= 6e−0.75ū (t− 0.25)− 5e−1.14ū (t− 0.38) + 3e−1.86ū (t− 0.62) (4.120)
+ e−2.5ū (t− 0.85)− 2e−3ū (t− 1) (4.121)

In this case the coe�cients aj are

aj =
1

j!

n∑
i=1

cie
−3βti (−ti)j (4.122)

=
(−1)j

j!

(
0.25je−0.75 − 0.38je−1.14 + 0.62je−1.86 + 0.85je−2.5 − e−3

)
(4.123)

In Figure 4.1, it is possible to see a comparison between the true response, described
before, and the response of the approximated model with di�erent orders using the
input signal

u (t) =

{
sin
(√
t
)

t ≥ 0

0 t < 0
(4.124)

0 0.2 0.4 0.6 0.8 1 1.2

0

0.5

1

1.5

Figure 4.1: Comparison of the true output with the output of the Padé
approximant with di�erent orders.
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4.7 Identification with more complex input
signals

The proposed method is not trivial to implement because it requires the analytical solution
of the integrals (4.10) and (4.33). In Section 4.5, we have reported the solutions of these
integrals for some common simple inputs, but in practice, a lot of di�erent and more com-
plicated input can be used. Furthermore, in some application, the shape of the excitation
signal u (t) is not known and its sampled alongside the output. In these cases, the approach
explained before is not directly usable.

In order to tackle these problems, consider the following input signal

u (t) =
m∑
p=1

apup (t) (4.125)

where m ∈ N \ {0}, ap ∈ R with p = 1, . . . ,m and up : R+ → R is a simpler signal. This
is a very general input that can be used in a lot of di�erent situations. To better understand
this concept consider the following examples.

Example 4.2: Multisine input

The multi-sine, a very common input signal used in frequency-domain system identi-
�cation (de�nition 5.4 of [98]), can be seen as a weighted sum of weighted sinewaves.
In particular, we can write

u (t) =
m∑
p=0

ap sin (2πpf0t+ ϕp) (4.126)

where f0 ∈ R+ is the fundamental frequency, pf0 with p = 1, . . . ,m are the excited
frequencies, ϕp ∈ R with p = 1, . . . ,m are the phased of the excited frequencies
and ap ∈ R with p = 1, . . . ,m their amplitude.

Example 4.3: Polynomial input

olynomial signals can be seen as a weighted sum of monomials

u (t) =
m∑
p=0

apz
p. (4.127)

Example 4.4: Zero-order Holder input

If the input signal is not known, but it is sampled alongside the output, a possible
solution is to use a Zero Order Holder (ZOH) to convert the samples in an approxima-
tion of the continuous signal. In particular, the approximated signal can be written
as

u (t) =
n∑
i=1

{
ui − ui−1 t ≥ ti
0 t < ti

(4.128)

where ui with i = 1, . . . , n are the inputs samples and u0 = 0. Now, it is trivial to
see that this signal is a sum of n steps with di�erent amplitudes and di�erent starting
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times.

In these cases, u (t) can inherit the properties of the various up (t) signals thanks to the
following theorems.

Theorem 4.7. Let the input u (t) be of the form (4.125). The operator Aui (x), as described
in (4.33), is equal to

Aui (x) =
m∑
p=1

apA
up
i (x) (4.129)

Proof. See Section 4.10 on page 126. �

Theorem 4.8. Let the input u (t) be of the form (4.125). If Ĝup (s) is asymptotically stable
for p = 1, . . . ,m then Ĝu (s) is asymptotically stable.

Proof. See Section 4.10 on page 126. �

Theorem 4.9. Let the input u (t) be of the form (4.125). The derived kernel ou (ti, tj), as
described in (4.10), is equal to

ou (ti, tj) =
m∑

p1=1

m∑
p2=1

ap1ap2o
up1 ,up2 (ti, tj) (4.130)

where

oup1 ,up2 (ti, tj) =

+∞∫
0

up1 (ti − ψ)

 +∞∫
0

up2 (tj − ξ) k (ψ, ξ) dξ

 dψ (4.131)

Proof. See Section 4.10 on page 127. �

These theorems provide a way to handle complex signals by working on their simpler com-
ponents. For instance, the examples before-mentioned are all composed by signals that were
analyzed in Section 4.5 and therefore their implementation is straightforward.

According to Theorem 4.9, it is necessary to compute the term oup1 ,up2 for any combination
of the two inputs in the sum. To do so, it is possible to generalize Theorem 4.2 to the case
where we need to compute oup1 ,up2 thanks to the following Theorem.

Theorem 4.10. Let:

• the kernel k be a stable-spline of order q;

• u1 : R→ R be an input signal such that u1 (t) = 0, ∀t ≤ d1;

• u2 : R→ R be an input signal such that u2 (t) = 0, ∀t ≤ d2.

Then

ou1,u2q (ti, tj) = λ

q−1∑
h=0

γq,h

{
ru1,u2q,h (ti, tj) + wu1,u2q,h (ti, tj) ti − d1 ≤ tj − d2
ru2,u1q,h (tj , ti) + wu2,u1q,h (tj , ti) ti − d1 > tj − d2

(4.132)
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where

ru1,u2q,h (ti, tj) =

ti∫
d1

tj−ti+ξ∫
d2

u1 (ξ)u2 (ψ) e−β[(2q−h−1)(tj−ψ)+h(ti−ξ)] dψ dξ (4.133)

wu1,u2q,h (ti, tj) =

ti∫
d1

tj∫
tj−ti+ξ

u1 (ξ)u2 (ψ) e−β[(2q−h−1)(ti−ξ)+h(tj−ψ)] dψ dξ (4.134)

Proof. See Section 4.10 on page 119. �

4.8 Summary of the proposed algorithm
In order to implement the proposed algorithm, it is necessary to do some mathematical
computation based on the excitation signal used for the experiment. In particular, it is
necessary to compute two formulas

• The derived kernel ou as described in (4.10). If the kernel used is a stable-spline then
the Theorem 4.2 can be helpful.

• The identi�ed transfer function Ĝu as described in Theorem 4.3. If the kernel used is
a stable-spline then the Theorem 4.4 can be helpful.

For some common inputs the Ĝu is reported in Section 4.5 and in case of more complex
inputs the theorems 4.7 and 4.9 can be useful. In the case of sampled inputs and u (t) un-
known, it is possible to interpolate the samples in some way. A possible method is reported
in Example 4.4, but there are other possibilities, such an higher-order holder or the Whit-
taker–Shannon interpolation formula.

Given these two formulas the non-parametric system identi�cation is carried out following
Algorithm 4.2. The transfer function returned by this algorithm can be non-rational, as
explained in Section 4.6, and it is possible to use Algorithm 4.1 in order to �nd a rational
approximation. In the end, it is possible to reduce the dimension of the estimated rational
model by using some dimensional reduction algorithm, such as the balance reduction [126].

Algorithm 4.2: Non-parametric transfer function identi�cation
Input: The dataset D
Input: A way to compute the function ou given ζ = [λ, β, τ, q] and two time instants
Input: A way to compute Ĝu given ζ = [λ, β, τ, q] and c

1 Discard the part of the dataset D corresponding to time instants ti ≤ d (see Section 4.4
for more details)

2 Find the optimal hyper-parameters ζ̃ by minimizing equation (4.13) (see Section 4.2 for
more details)

3 Compute the matrixO using the hyper-parameters ζ̃
4 Compute a valid solution c of the linear system (4.8)
5 Compute Ĝu given ζ̃ and c

Output: The transfer function Ĝu

The proposed algorithm requires to solve the linear system (4.8). Following the reasoning of
Chapter 3, this system can have in�nite equivalent solutions even when the dataset respects
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Assumption 4.3. It is advisable to use the LN1 solution explained in 3.3 in order to minimize
the length of the vector c. This simpli�es the computational complexity of the next steps
in a signi�cant way. The Padé approximation is also more computationally reliable with a
smaller coe�cient vector.

Another important thing to keep in mind during the implementation of this algorithm is
to try to minimize the number of transfer functions summed during the computation of
Ĝu because the symbolic algorithms used to execute this sum are very computationally
expensive and can make signi�cant errors with a large number of addends.

4.9 Numerical results
To better understand the proposed method, consider the following transfer function models.

G1 : G1 (s) = −
27

20

2000s3 + 3600s2 + 2095s+ 396

1350s4 + 7695s3 + 12852s2 + 7796s+ 1520
(4.135)

G2 : G2 (s) = 1600
1− 4s

s4 + 5s3 + 408s2 + 416s+ 1600
(4.136)

G3 : G3 (s) = −
1

10

1869s4 + 17400s3 + 68220s2 + 72350s+ 5075

1000s5 + 4419s4 + 14160s3 + 27180s2 + 22220s+ 5168
(4.137)

The fundamental properties of these three systems are reported in Table 4.1, their Bode
diagrams are presented in Figure 4.3 and their impulse response can be seen in Figure 4.2.

The model G1 is a simple model with 4 real poles and 3 real zeros that behaves like a low-
pass �lter with a negative gain, as shown in its Bode diagram. This results in a very smooth
impulse response.

The second one G2 is a famous benchmark system used for continuous-time system iden-
ti�cation called Rao-Garnier system [70]. This system is characterized by two couples of
complex-conjugate poles that generate two di�erent resonances. These system produces
an oscillating impulse response of the system.

The third system has both a couple of conjugate complex poles and a couple of conjugate
complex zeros. This results in a strange frequency response behavior, as shown in its Bode
diagram, and an oscillating impulse response.
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Figure 4.2: Impulse response of the three models used in the simulations.
From left to right: G1, G2 and G3.

In the simulation described in this section, the starting Padé approximant order is 25 and
the kernel used is a stable-spline whose order q is searched between 1 and 5.



4.9. Numerical results 105

System Order Static gain Poles Zeros

p1 ' −0.63 z1 ' −0.55

p2 ' −0.4 z2 ' −0.45

p3 ' −3.33 z3 ' −8
G1 4 −

2673

7600
' −1.98

p4 ' −1.33

p1 ' −2− j19.90 z1 = 0.25

p2 ' −2 + j19.90

p3 ' −0.5− j1.94
G2 4 1

p4 ' −0.5 + j1.94

p1 ' −0.63− j2.61 z1 ' −3.88− j3.05

p2 ' −0.63 + j2.61 z2 ' −3.88 + j3.05

p3 ' −0.37 z3 ' −1.48

p4 ' −1.29 z4 ' −0.08

G3 5 −
1100

421
' 2.61

p5 ' −1.49

Table 4.1: Fundamental parameters of the three models used in the simu-
lations.

System T η2imp η2step

G1 4 s 2.43 · 10−2 2.78 · 10−2

G2 12 s 2.72 · 100 6.80 · 10−1

G3 15 s 2.69 · 10−3 6.74 · 10−3

Table 4.2: Parameters of the two tests that change based on the system
used.

4.9.1 Identification using impulse-response data
To evaluate the performance of the method when dealing with impulse response data con-
sider the following dataset

D1 = {(ti, yi) |i = 1, . . . , 100} (4.138)

sampled from the probabilistic model

ti ∼ U (0, T ) i = 1, . . . , 100 (4.139)
ei ∼ N

(
0, η2imp

)
i = 1, . . . , 100 (4.140)

yi = rδ (ti) + ei i = 1, . . . , 100 (4.141)

where ti and ei, with i = 1, . . . , 100, are all independent random variables and the function
rδ is the impulse response of the system. The value η2imp and T change for every system
and their value is reported in Table 4.2. In particular, η2imp is chosen in order to obtain a
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Figure 4.3: Bode diagrams of the three models used in the simulations.
From left to right: G1, G2 and G3.

SNR of 5.

In Figure 4.4, it is possible to see the true impulse response compared with 100 di�erent
estimated impulse responses obtained with 100 di�erent datasets D1 sampled as explained
before. Analogously, in Figure 4.5 the same thing can be seen in the frequency domain.

From these graphs, it is possible to notice that the method works very well for the smooth
systems G1 and G3, but it show worse performance on the fast varying system G2. This
is due to the fact that the stable-splines, naturally, are not the most suitable kernel choice
when dealing with more oscillating outputs.

A second reason, for this behavior, is the noise. In fact, the noise variance is higher than
the fast oscillation of G2 and therefore, the optimization procedure tends to remove them
in the estimation. This can be seen in the Bode diagram, where the second resonance is
completely ignored by the estimated systems.
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Figure 4.4: Impulse response of the true system (black line) compared with
100 di�erent estimations (colored lines) obtained using impulse response

data. From left to right: G1, G2 and G3.

In order to have a more quantitative measure of the performance, it is possible to compare
the output of the true model with the one of the estimated model on a test dataset. This
new dataset is obtained using a random White Gaussian Noise with 10Hz of bandwidth as
excitation signal. Both input and output are sampled regularly with the sampling frequency
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Figure 4.5: Bode diagrams of the true system (black line) compared with
100 di�erent estimations (colored lines) obtained using impulse response

data. From left to right: G1, G2 and G3.

of 1 kHz for 1000 s. Then the performances are computed using the following index

Fit = 1−
∑nv

t=1 (yt − ŷt)2∑nv
t=1 (yt −

∑nv
t=1 yt)

2 (4.142)

where nv is the length of the obtained dataset, yt and ŷt, with t = 1, . . . , nv , are, respec-
tively, the samples of the true response and the estimated one. The results can be seen in
Figure 4.6, where the �t computed for 100 di�erent datasets for each system is shown with
three boxplots. Here, we can con�rm the previous observations: the method works very
well for the smooth systems G1 and G3, but it has worse performance on the fast varying
model G2.
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Figure 4.6: Boxplot of the performance on the test dataset obtained using
impulse response data.
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To better assess the performance with di�erent models, a Monte Carlo simulation with a
random generated asymptotically stable dynamic linear system with order 6. The results
are shown in Figure 4.7, where the performances are evaluated on a test dataset generated
as explained before.
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Figure 4.7: Boxplot of the performance on the test dataset obtained using
impulse response data on randomly generated LTI models with order 6.

4.9.2 Identification using step-response data
This section is organized as the previous one, but using step response data. Therefore,
consider the following dataset

D2 = {(ti, yi) |i = 1, . . . , 100} (4.143)

sampled from the probabilistic model

ti ∼ U (0, T ) i = 1, . . . , 100 (4.144)
ei ∼ N

(
0, η2step

)
i = 1, . . . , 100 (4.145)

yi = rstep (ti) + ei i = 1, . . . , 100 (4.146)

where ti and ei, with i = 1, . . . , 100, are all independent random variables and the function
rstep is the impulse response of the system. The value η2step and T change for every system
and their value is reported in Table 4.2. In particular, η2step is chosen in order to obtain a
SNR equal to 5.

As before, in Figure 4.8 is possible to see the true step response compared with 100 di�er-
ent estimated step responses obtained with 100 di�erent datasets D2 sampled as explained
before. Analogously, in Figure 4.9 the same thing can be seen in the frequency domain.

From these graphs, we can see that the results are similar to the one obtained from impulse
response data. The method works well for the system with a smooth impulse response G1

and G3 and it struggles with the non-smooth G2. The motivations for this behavior are also
the same.



4.9. Numerical results 109

0 1 2 3 4

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 2 4 6 8 10 12

-8

-6

-4

-2

0

2

4

6

0 5 10 15

-0.5

-0.4

-0.3

-0.2

-0.1

0

Figure 4.8: Step response of the true system (black line) compared with
100 di�erent estimations (colored lines) obtained using step response data.

From left to right: G1, G2 and G3.
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Figure 4.9: Bode diagrams of the true system (black line) compared with
100 di�erent estimations (colored lines) obtained using step response data.

From left to right: G1, G2 and G3.

These observations are also con�rmed by the performance on the test dataset, as shown
in Figure 4.10. Where the test dataset and the �t index are the same used in the previous
section.

Following the same reasoning used for the identi�cation with impulse response data, a
Monte Carlo simulation with a random generated asymptotically stable dynamic linear
system with order 6. The results are shown in Figure 4.11, where the performances are
evaluated on test dataset generated as explained before.

4.9.3 Dimensional reduction of the estimated model
At the start of Section 4.5, it is said that the estimated the high-dimensional transfer function
can be fed to dimensional reduction algorithm. In this section, we will delve into this aspect
to see the e�ect of the dimensional reduction on the estimated model.

The algorithm used to execute the dimensional reduction is the Balance Reduction [126].
To select the right order automatically the singular value of the Hankel matrix [48] of the
estimated model is used.

To evaluate the performance of the dimensional reduction, consider the case of identi�ca-
tion using impulse response data, as in Section 4.9.1. In Figure 4.12, it is possible to see the
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Figure 4.10: Boxplot of the performance on the test dataset obtained using
impulse response data.

performance with di�erent levels of reduction and in Figure 4.13, there is the histogram of
the order at various levels of reductions. The level of reduction is given by the fraction of
singular values of the Hankel matrix is kept.

From these graphs, it is possible to note that the performance does not decrease signi�cantly
because the estimated model has a very large number of redundant modes. For this reason,
even when we take 99% of the singular values the order decrease signi�cantly.

4.9.4 Comparison with the state of the art
In the last decades, continuous-time system identi�cation was studied in detail [46, 47] and
many methods were developed. In particular, the most recent methods are implemented in
the CONTSID toolbox [45, 91] using MatLab. In this section, a comparison between the
proposed kernel method and the SRIVC method [46, 136, 137] (using the implementation
of the before-mentioned toolbox). This method requires the knowledge of the order of the
system under analysis. In this comparison, the Young Information Criterion (YIC) [137]
method is used to select the best order among a pool of candidates. This is implemented in
the toolbox in the functions srivcstruc and selcstruc.

The comparison was done on the three models introduced at the start of this section in the
following settings:

• the input signal is a step;

• the dataset is composed by 250 output measurements taken between 0 and T where
T changes for every model as reported in Table 4.2;

• the dataset is sampled regularly;

• the measurements noise has variance η2step where η2step changes for every model as
reported in Table 4.2 (the SNR is always equal to 5);

• the pool of possible number of poles for the SRIVC method is {1, 2, 3, 4, 5, 6};
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Figure 4.11: Boxplot of the performance on the test dataset obtained using
step response data on randomly generated LTI models with order 6.
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Figure 4.12: Boxplot of the performance on the test dataset using di�erent
level of dimensional reduction on the three benchmark models. The systems

used are, from left to right, G1, G2 and G3.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

10

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

10

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

10

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

20

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

20

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

20

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

20

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

50

Figure 4.13: Histogram of the order of the estimated system at di�erent
level of dimensional reduction on the three benchmark models. The systems

used are, from left to right, G1, G2 and G3.
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• the pool of possible number of zeros for the SRIVC method is {1, 2, 3, 4, 5, 6};

The results of a Monte Carlo simulation with 100 di�erent noise values are reported in Fig-
ure 4.14, where it is clear that the proposed approach works signi�cantly better. The second
example, the Rao-Garnier system [70], is the one where the proposed kernel approach has
more di�culties, but the median �t is still slightly better than the one obtained with the
CONTSID toolbox.
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Figure 4.14: Comparison between the proposed method and SRIVC from
the CONTSID toolbox. From left to right: G1, G2 and G3.

To further verify the performance of the proposed method with respect to the toolbox, it is
possible to compare the performance on 100 randomly generated systems of order 6. Using
the same settings as the ones reported before (with T equals to the settling time of the
system and η2step selected in such a way that the SNR is 5), the obtained results are shown
in Figure 4.15. Here, it is evident that the proposed approach is more robust than the one
proposed in the CONTSID toolbox.
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Figure 4.15: Comparison between the proposed method and SRIVC from
the CONTSID toolbox on 100 randomly generated LTI models with or-

der 6.

4.10 Proofs
The proofs of all the theorems presented in this chapter are reported in this section.
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Proof of Theorem 4.1. First of all we can note that the term Gq (a, x)Gq (b, x) is equal to
zero when a < x ∨ b < x, therefore

Gq (a, x)Gq (b, x) =
(a− x)q−1 (b− x)q−1

((q − 1)!)2

{
1 if a ≥ x ∧ b ≥ x
0 if a < x ∨ b < x

(4.147)

=
(a− x)q−1 (b− x)q−1

((q − 1)!)2

{
1 if x ≤ min (a, b)

0 if x > min (a, b)
(4.148)

following this fact, the integral (4.15) can be truncated to min (a, b):

sq (a, b) =
1

((q − 1)!)2

min(a,b)∫
0

(a− x)q−1 (b− x)q−1 dx (4.149)

with the change of variable y = a− x and some mathematical steps, we obtain

sq (a, b) =
1

((q − 1)!)2

a−min(a,b)∫
a

−yq−1 (b− (a− y))q−1 dy (4.150)

=
− 1

((q − 1)!)2

a−min(a,b)∫
a

yq−1 (− (−b+ a− y))q−1 dy (4.151)

=
− (−1)q−1

((q − 1)!)2

a−min(a,b)∫
a

yq−1 (a− b− y)q−1 dy (4.152)

=
(−1)q

((q − 1)!)2

a−min(a,b)∫
a

yq−1 (a− b)q−1
(

1−
y

a− b

)q−1
dy (4.153)

=
(−1)q (a− b)2q−2

((q − 1)!)2

a−min(a,b)∫
a

(
y

a− b

)q−1(
1−

y

a− b

)q−1
dy (4.154)

Let us �rst consider the case when a = min (a, b). Here it is useful to consider the change
of variable

z =
y

a− b
(4.155)

that transforms the integral in

sq (a, b) =
(−1)q (a− b)2q−2

((q − 1)!)2

0∫
a
a−b

zq−1 (1− z)q−1 (a− b) dz (4.156)

= −
(−1)q (a− b)2q−1

((q − 1)!)2

a
a−b∫
0

(
z − z2

)q−1
dz (4.157)
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A very similar formulation can also be obtained in the case where b = min (a, b) using the
change of variable

z = 1−
y

a− b
(4.158)

that allows writing

sq (a, b) =
(−1)q (a− b)2q−2

((q − 1)!)2

0∫
b

b−a

− (1− z)q−1 (z)q−1 (a− b) dz (4.159)

=
(−1)q (a− b)2q−1

((q − 1)!)2

b
b−a∫
0

(
z − z2

)q−1
dz (4.160)

Therefore, the kernel can be written as

sq (a, b) =
(−1)q (a− b)2q−1

((q − 1)!)2


−Lq

(
a

a− b

)
a ≤ b

Lq

(
b

b− a

)
a > b

(4.161)

where

Lq (x) =

x∫
0

(
z − z2

)q−1
dz (4.162)

The integral Lq (x) can be easily solved using the binomial theorem

Lq (x) =

x∫
0

(
z − z2

)q−1
dz (4.163)

=

x∫
0

(
q−1∑
i=0

(q − 1)!

i! (q − 1− i)!
zq−1−i

(
−z2

)i)
dz (4.164)

=

q−1∑
i=0

(q − 1)! (−1)i

i! (q − 1− i)!

x∫
0

zq−1−i+2idz (4.165)

=

q−1∑
i=0

(q − 1)! (−1)i

i! (q − 1− i)!

x∫
0

zq+i−1dz (4.166)

=

q−1∑
i=0

(q − 1)! (−1)i

i! (q − 1− i)! (q + i)
xq+i (4.167)
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obtaining

sq (a, b) =

q−1∑
i=0

(−1)q+i (a− b)2q−1

i! (q − 1− i)! (q + i) (q − 1)!


−

(
a

a− b

)q+i
a ≤ b(

b

b− a

)q+i
a > b

(4.168)

=

q−1∑
i=0

(−1)q+i

i! (q − 1− i)! (q + i) (q − 1)!

{
− (a− b)q−i−1 aq+i a ≤ b
(−1)2q−1 (b− a)q−i−1 bq+i a > b

(4.169)

considering the fact that (−1)2q−1 = −1 because 2q− 1 is always an odd number, we have

sq (a, b) =

q−1∑
i=0

(−1)q+i−1

i! (q − 1− i)! (q + i) (q − 1)!

{
(a− b)q−i−1 aq+i a ≤ b
(b− a)q−i−1 bq+i a > b

(4.170)

This expression can be further simpli�ed by applying the binomial theorem where possible.
In particular, we can note that

(a− b)q−i−1 =

q−i−1∑
h=0

(q − i− 1)! (−1)h

h! (q − i− h− 1)!
aq−i−h−1bh (4.171)

(b− a)q−i−1 =

q−i−1∑
h=0

(q − i− 1)! (−1)h

h! (q − i− h− 1)!
bq−i−h−1ah (4.172)

this results in the formulation

sq (a, b) =

q−1∑
i=0

q−i−1∑
h=0

αq (i, h)

{
aq−i−h−1bhaq+i a ≤ b
bq−i−h−1ahbq+i a > b

(4.173)

=

q−1∑
i=0

q−i−1∑
h=0

αq (i, h)

{
a2q−h−1bh a ≤ b
b2q−h−1ah a > b

(4.174)

where

αq (i, h) = �
���

��
(q − i− 1)! (−1)h

h! (q − i− h− 1)!

(−1)q+i−1

i!���
���(q − 1− i)! (q − 1)! (q + i)

(4.175)

=
(−1)q+i+h−1

h!i! (q − i− h− 1)! (q − 1)! (q + i)
(4.176)

In order to remove one of the two summations, we note that

sq (a, b) =

q−1∑
i=0

q−1∑
h=0

α̃q (i, h)

{
a2q−h−1bh a ≤ b
b2q−h−1ah a > b

(4.177)

where

α̃q (i, h) =

{
α̃q (i, h) if h ≤ q − i− 1

0 if h > q − i− 1
(4.178)
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this is useful because, now, it is possible to switch the summations order and to bring all
the terms that does not depend on i in front

kq (a, b) =

q−1∑
h=0

({
a2q−h−1bh a ≤ b
b2q−h−1ah a > b

)(
q−1∑
i=0

α̃q (i, h)

)
︸ ︷︷ ︸

γq,h

(4.179)

=

q−1∑
h=0

γq,h

{
a2q−h−1bh a ≤ b
b2q−h−1ah a > b

(4.180)

To end this proof, we can note that the coe�cients γq,h are equal to

γq,h =

q−1∑
i=0

α̃q (i, h) (4.181)

=

q−h−1∑
i=0

αq (i, h) +

q−1∑
i=q−h−1

0 (4.182)

=

q−h−1∑
i=0

(
(−1)q+i+h−1

h!i! (q − i− h− 1)! (q − 1)! (q + i)

)
(4.183)

=
(−1)q+h−1

h! (q − 1)!

q−h−1∑
i=0

(
(−1)i

i! (q − i− h− 1)! (q + i)

)
(4.184)

=
(−1)q+h−1

h! (q − 1)!

q−h−1∑
i=0

(
(q − h− 1)!

i! (q − i− h− 1)!

(−1)i

(q − h− 1)! (q + i)

)
(4.185)

=
(−1)q+h−1

h! (q − 1)!

q−h−1∑
i=0

((
q − h− 1

i

)
(−1)i

(q − h− 1)! (q + i)

)
(4.186)

now, we can note that

1∫
0

hq−1 (−h)i dh = (−1)i
1∫

0

hq+i−1 dh = (−1)i
[
hq+i

q + i

]1
0

=
(−1)i

q + i
(4.187)

this allows writing the slightly more complicate formulation

γq,h =
(−1)q+h−1

h! (q − 1)! (q − h− 1)!

q−h−1∑
i=0

(q − h− 1

i

) 1∫
0

hq−1 (−h)i dh

 (4.188)

=
(−1)q+h−1

h! (q − 1)! (q − h− 1)!

1∫
0

hq−1
q−h−1∑
i=0

(
q − h− 1

i

)
(−h)i︸ ︷︷ ︸

(1−h)q−h−1

dh (4.189)

=
(−1)q+h−1

h! (q − 1)! (q − h− 1)!

1∫
0

hq−1 (1− h)q−h−1 dh

︸ ︷︷ ︸
B(q,q−h)

(4.190)
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=
(−1)q+h−1

h! (q − 1)! (q − h− 1)!
B (q, q − h) (4.191)

where B (q, q − h) is the Beta function [88] evaluated in q and q − h. A famous property
of this function allows us to simplify the formula as follow

γq,h =
(−1)q+h−1

h!���
�(q − 1)!((((

(((q − h− 1)!

���
�(q − 1)!((((

(((q − h− 1)!

(q + q − h− 1)!
(4.192)

=
(−1)q+h−1

h! (2q − h− 1)!
(4.193)

as we wanted to show.

�

Proof of Corollary 4.1. From the de�nition of stable-spline and the formulation provided by
Theorem 4.1, we have

kq (a, b) = λsq

(
e−βa, e−βb

)
(4.194)

= λ

q−1∑
h=0

γq,h

{(
e−βa

)2q−h−1 (
e−βb

)h if e−βa ≤ e−βb(
e−βb

)2q−h−1 (
e−βa

)h if e−βa > e−βb
(4.195)

= λ

q−1∑
h=0

γq,h

{
e−β(2q−h−1)ae−βhb if a ≥ b
e−β(2q−h−1)be−βha if a < b

(4.196)

= λ

q−1∑
h=0

γq,h

{
e−β[(2q−h−1)a+hb] if a ≥ b
e−β[(2q−h−1)b+ha] if a < b

(4.197)

as we wanted to show. �
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Proof of Theorem 4.2. Thanks to Assumption 4.2 the two integrals can be truncated to ti−d
and tj − d.

ouq (ti, tj) =

ti−d∫
0

u (ti − ψ)

 tj−d∫
0

u (tj − ξ) kq (ψ, ξ) dξ

 dψ (4.198)

Now, with the changes of variable x = ti − ψ and z = tj − ξ, we obtain

ouq (ti, tj) =

ti∫
d

u (x)

 tj∫
d

u (z) kq (ti − x, tj − z) dz

 dx (4.199)

Using the result of Corollary 4.1, we can write

ouq (ti, tj) =

ti∫
d

u (x)

 tj∫
d

u (z) kq (ti − x, tj − z) dz

 dx (4.200)

=

ti∫
d

u (x)

 tj∫
d

u (z)

[
λ

q−1∑
h=0

γq,h

{
e−β[(2q−h−1)(ti−x)+h(tj−z)] if ti − x ≥ tj − z
e−β[(2q−h−1)(tj−z)+h(ti−x)] if ti − x < tj − z

]
dz

 dx

(4.201)

= λ

q−1∑
h=0

γq,h

ti∫
d

u (x)

 tj∫
d

u (z)

{
e−β[(2q−h−1)(ti−x)+h(tj−z)] if z ≥ tj − ti + x

e−β[(2q−h−1)(tj−z)+h(ti−x)] if z < tj − ti + x
dz

 dx

(4.202)

To further simplify, we can �rst consider the case where ti ≤ tj and therefore tj − ti ≥ 0.
Here, since d ≤ x ≤ ti, the internal integral I can be rewritten as a sum of two parts

I1 (x) =

tj−ti+x∫
d

u (z) e−β[(2q−h−1)(tj−z)+h(ti−x)] dz (4.203)

I2 (x) =

tj∫
tj−ti+x

u (z) e−β[(2q−h−1)(ti−x)+h(tj−z)] dz (4.204)

therefore, the derived kernel becomes

ouq (ti, tj) =

q−1∑
h=0

γq,h

ti∫
d

u (x) (I1 (x) + I2 (x)) dx (4.205)

=

q−1∑
h=0

γq,h

 ti∫
d

u (x) I1 (x) dx+

ti∫
d

u (x) I2 (x) dx

 (4.206)

=

q−1∑
h=0

γq,h
(
ruq,h (tj , ti) + wuq,h (tj , ti)

)
(4.207)
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Consider, now, the case when ti > tj . Here, we can employ the fact that the kernel is
symmetric obtaining

ouq (ti, tj) = ouq (tj , ti) =

q−1∑
h=0

γq,h
(
ruq,h (tj , ti) + wuq,h (tj , ti)

)
(4.208)

therefore

ouq (ti, tj) =


∑q−1

h=0 γq,h

(
ruq,h (ti, tj) + wuq,h (ti, tj)

)
ti ≤ tj∑q−1

h=0 γq,h

(
ruq,h (tj , ti) + wuq,h (tj , ti)

)
ti > tj

(4.209)

=

q−1∑
h=0

γq,h

{
ruq,h (ti, tj) + wuq,h (ti, tj) ti ≤ tj
ruq,h (tj , ti) + wuq,h (tj , ti) ti > tj

(4.210)

as we wanted to show.

�

Proof of Theorem 4.10. This proof follows the same reasoning of the one of Theorem 4.2.

�



120 Chapter 4. Kernel-based continuous-time linear system identi�cation

Proof of Theorem 4.3. The transfer function of an LTI system correspond to the Laplace
transform of its impulse response. For this reason, we have

Ĝu (s) = L [ĝu] (s) (4.211)

=

∞∫
0

ĝu (t) e−st dt (4.212)

=

∞∫
0

(
n∑
i=1

ciĝ
u
i (t)

)
e−st dt (4.213)

=
n∑
i=1

ci

∞∫
0

ĝui (t) e−st dt (4.214)

=

n∑
i=1

ciĜ
u
i (s) (4.215)

where Ĝui (s) = L [ĝui ] (s).

Ĝui (s) =

∞∫
0

ĝui (t) e−st dt (4.216)

=

∞∫
0

 ∞∫
0

u (ti − ξ) k (t, ξ) dξ

 e−st dt (4.217)

=

∞∫
0

u (ti − ξ)

 ∞∫
0

k (t, ξ) e−st dt

 dξ (4.218)

=

∞∫
0

u (ti − ξ)K (s; ξ) dξ (4.219)

To further simplicity this expression, we can consider Assumption 4.2 that allows limiting
the integral to ti − d

Ĝui (s) =

ti−d∫
0

u (ti − ξ)K (s; ξ) dξ (4.220)

At last, with the change of variable x = ti − ξ, we obtain

Ĝui (s) =

ti∫
d

u (x)K (s; ti − x) dx (4.221)

as we wanted to show. �
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Proof of Theorem 4.4. Let’s start by analyzing the term K (s;x) when the kernel is a stable-
spline of order q. To do so, it is useful to note that the parameter x ∈ R is always greater
than 0 because it is the integration variable of (4.28). For this reason, we can write:

Kq (s;x) =

∞∫
0

kq (x, t) e−st dt (4.222)

=

∞∫
0

[
λ

q−1∑
h=0

γq,h

{
e−β[(2q−h−1)x+ht] if x ≥ t
e−β[(2q−h−1)t+hx] if x < t

]
e−st dt (4.223)

= λ

q−1∑
h=0

γq,h

∞∫
0

e−st

{
e−β[(2q−h−1)x+ht] if x ≥ t
e−β[(2q−h−1)t+hx] if x < t

dt (4.224)

= λ

q−1∑
h=0

γq,h

 x∫
0

e−β[(2q−h−1)x+ht]−st dt+

∞∫
x

e−β[(2q−h−1)t+hx]−st dt

 (4.225)

The two integrals can be easily solved analytically. In particular, we have:

x∫
0

e−β[(2q−h−1)x+ht]−st dt = e−β(2q−h−1)x
x∫

0

e−(βh−s)t dt (4.226)

= e−β(2q−h−1)x

[
e−(s+βh)t

− (s+ βh)

]x
0

(4.227)

= −
e−β(2q−h−1)x

s+ βh

(
e−(s+βh)x − 1

)
(4.228)

=
e−β(2q−h−1)x

s+ βh
−
e−[s+β(2q−1)]x

s+ βh
(4.229)

and
∞∫
x

e−β[(2q−h−1)t+hx]−st dt = e−βhx
∞∫
x

e−[s+β(2q−h−1)]t dt (4.230)

= e−βhx

[
e−[s+β(2q−h−1)]t

− [s+ β (2q − h− 1)]

]∞
x

(4.231)

= −
e−βhx

s+ β (2q − h− 1)

(
0− e−[s+β(2q−h−1)]x

)
(4.232)

=
e−[s+β(2q−1)]x

s+ β (2q − h− 1)
(4.233)

therefore Kq (s;x) can be reformulated as

Kq (s;x) = λ

q−1∑
h=0

γq,h

[
e−β(2q−h−1)x

s+ βh
−
e−[s+β(2q−1)]x

s+ βh
+

e−[s+β(2q−1)]x

s+ β (2q − h− 1)

]
(4.234)
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= λ

q−1∑
h=0

γq,h

[
e−β(2q−h−1)x

s+ βh
+ e−[s+β(2q−1)]x

(
1

s+ β (2q − h− 1)
−

1

s+ βh

)]
(4.235)

= λ

[
q−1∑
h=0

γq,he
−β(2q−h−1)x

s+ βh
+ e−[s+β(2q−1)]x

q−1∑
h=0

γq,h

(
1

s+ β (2q − h− 1)
−

1

s+ βh

)]
(4.236)

this can be further simpli�ed by noting that

q−1∑
h=0

γq,h

(
1

s+ β (2q − h− 1)
−

1

s+ βh

)
=

(−1)q β2q−1∏2q−1
i=0 (s+ βi)

(4.237)

obtaining

Kq (s;x) = λ

(
q−1∑
h=0

γq,he
−β(2q−h−1)x

s+ βh
+ e−[s+β(2q−1)]x

(−1)q β2q−1∏2q−1
i=0 (s+ βi)

)
(4.238)

Now, it is possible to plug Kq (s; a) in (4.28) to obtain Ĝui for the stable-spline kernel.

Ĝui (s) =

ti∫
d

u (x)K (s; ti − x) dx (4.239)

=

ti∫
d

u (x)

[
λ

(
q−1∑
h=0

γq,he
−β(2q−h−1)(ti−x)

s+ βh
+ e−[s+β(2q−1)](ti−x)

(−1)q β2q−1∏2q−1
i=0 (s+ βi)

)]
dx

(4.240)

= λ

q−1∑
h=0

γq,h

s+ βh

ti∫
d

u (x) e−β(2q−h−1)(ti−x) dx

︸ ︷︷ ︸
Aui (β(2q−h−1))

+
λ (−1)q β2q−1∏2q−1
i=0 (s+ βi)

ti∫
d

u (x) e−[s+β(2q−1)](ti−x) dx

︸ ︷︷ ︸
Aui (s+β(2q−1))

(4.241)

= λ

q−1∑
h=0

γq,h

s+ βh
Aui (β (2q − h− 1)) +

λ (−1)q β2q−1∏2q−1
i=0 (s+ βi)

Aui (s+ β (2q − 1))

(4.242)

In the end, the identi�ed transfer function using the stable-spline kernel is

Ĝu (s) =
n∑
i=1

ciĜ
u
i (s) (4.243)
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= λ

q−1∑
h=0

γq,h

s+ βh

n∑
i=1

ciA
u
i (β (2q − h− 1))︸ ︷︷ ︸

Quq,h(s)

+ λ
(−1)q β2q−1∏2q−1
i=0 (s+ βi)

n∑
i=1

ciA
u
i (s+ β (2q − 1))︸ ︷︷ ︸

Hu
q (s)

(4.244)

= λ

(
q−1∑
h=0

Quq,h (s) +Hu
q (s)

)
(4.245)

as we wanted to show.

�
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Proof of Theorem 4.5. Since the transfer function Ĝu is de�ned as the sum of q + 1 transfer
function, we need to show that all these addends are asymptotically stable.

First, Let us consider the q − 1 addends of the type

Quq,h (s) = λ
γq,h

s+ βh

(
n∑
i=1

ciA
u
i (β (2q − h− 1))

)
(4.246)

with h > 0. All these transfer functions have only one pole in −hβ and it is strictly less
than zero because h > 0 and β > 0. Therefore, these �rst q − 1 transfer functions are
asymptotically stable. The remainder of Ĝu is

R (s) = λQuq,0 (s) + λHu
q (s) (4.247)

= λ
γq,0

s+ β0

(
n∑
i=1

ciA
u
i (β (2q − 1))

)
+ λ

(−1)q β2q−1∏2q−1
i=0 (βi+ s)

(
n∑
i=1

ciA
u
i (s+ β (2q − 1))

)
(4.248)

=
λ

s

[
γq,0

(
n∑
i=1

ciA
u
i (β (2q − 1))

)
+

(−1)q β2q−1∏2q−1
i=1 (βi+ s)

(
n∑
i=1

ciA
u
i (s+ β (2q − 1))

)]
(4.249)

=
λ

s
R̃ (s) (4.250)

here, there are some poles that are strictly negative:

• −hβ for h = 1, . . . , 2q − 1 that are negative because β > 0 and h > 0;

• the one provided by Aui (s+ β (2q − 1)) that are strictly negative for the Theorem
hypothesis;

additionally there is a pole in 0, luckily there is also a zero in 0 because

R̃ (0) = γq,0

(
n∑
i=1

ciA
u
i (β (2q − 1))

)
+

(−1)q β2q−1∏2q−1
i=1 (βi+ 0)

(
n∑
i=1

ciA
u
i (0 + β (2q − 1))

)
(4.251)

=

(
(−1)q+0−1

0! (2q − 0− 1)!
+

(−1)q��
�

β2q−1

���b2q−1 (2q − 1)!

)(
n∑
i=1

ciA
u
i (β (2q − 1))

)
(4.252)

=
(

(−1)q−1 + (−1)q
) 1

(2q − 1)!

(
n∑
i=1

ciA
u
i (β (2q − 1))

)
(4.253)

= 0 (4.254)

because (−1)q−1 and (−1)q have opposite sign for every positive integer value of q. There-
fore, if Aui (s+ β (2q − 1)) have only strictly negative poles for i = 1, . . . , n, the transfer
Ĝu is asymptotically stable.

�
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Proof of Theorem 4.6. Let aj be the j-th coe�cient of the Taylor expansion of T (s) centered
in 0, i.e.

aj =
1

j!

dj

dsj
T (s)

∣∣∣∣∣
s=0

(4.255)

=
1

j!

dj

dsj

n∑
i=1

αie
−s(ti−d)

∣∣∣∣∣
s=0

(4.256)

=
1

j!

n∑
i=1

αi
dj

dsj
e−s(ti−d)

∣∣∣∣∣
s=0

(4.257)

=
1

j!

n∑
i=1

αi (−1)i (ti − d)i e−s(ti−d)
∣∣∣
s=0

(4.258)

=
1

j!

n∑
i=1

αi (d− ti)i e−s(ti−d)
∣∣∣
s=0

(4.259)

=
1

j!

n∑
i=1

αi (d− ti)j (4.260)

.

Following the procedure explained in details in [7] we obtain the following system of linear
equation  −L Iz+1

A 0z×z+1

 d

n

 =

 b1
b2

 (4.261)

where the matrices A, L, b1 and b2 are the one described in the Theorem statement. This
linear system can be divided in two parts because the lower-right block of the system matrix
is 0z×z+1. From this observation, we obtain{

−Ld+ Iz+1n = b1

Ad+ 0z×z+1n = b2
(4.262)

therefore

d = A−1b2 (4.263)
n = b1 +Ld (4.264)

as we wanted to show.

�
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Proof of Theorem 4.7. Starting from the de�nition of Aui (x) described in (4.33), we have

Aui (x) =

ti∫
d

u (t) ex(t−ti) dt (4.265)

=

ti∫
d

m∑
p=1

apup (t) ex(t−ti) dt (4.266)

=
m∑
p=1

ap

ti∫
d

up (t) ex(t−ti) dt (4.267)

=
m∑
p=1

apA
u
i (x) (4.268)

as we wanted to shown. �

Proof of Theorem 4.8. Starting from the result of Theorem 4.7, we can compute Ĝu using
Theorem 4.3. In particular

Quq,h (s) =
γq,h

s+ βh

(
n∑
i=1

ciA
u
i (β (2q − h− 1))

)
(4.269)

=
γq,h

s+ βh

 n∑
i=1

ci

m∑
p=1

apA
u
i (β (2q − h− 1))

 (4.270)

=

m∑
p=1

ap

(
γq,h

s+ βh

(
n∑
i=1

ciA
u
i (β (2q − h− 1))

))
(4.271)

=

m∑
p=1

apQ
up
q,h (s) (4.272)

Hu
q (s) =

(−1)q β2q−1∏2q−1
i=0 (βi+ s)

(
n∑
i=1

ciA
u
i (s+ β (2q − 1))

)
(4.273)

=
(−1)q β2q−1∏2q−1
i=0 (βi+ s)

 n∑
i=1

ci

m∑
p=1

apA
up
i (s+ β (2q − 1))

 (4.274)

=

m∑
p=1

ap

(
(−1)q β2q−1∏2q−1
i=0 (βi+ s)

(
n∑
i=1

ciA
up
i (s+ β (2q − 1))

))
(4.275)

=

m∑
p=1

apH
up
q (s) (4.276)

therefore

Ĝu (s) = λ

q−1∑
j=0

Quq,j (s) +Hu
q (s)

 (4.277)
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= λ

 m∑
p=1

apQ
up
q,j (s) +

m∑
p=1

apH
up
q (s)

 (4.278)

=

m∑
p=1

ap

(
λ
[
Q
up
q,j (s) +H

up
q (s)

])
(4.279)

=

m∑
p=1

apĜ
up (s) (4.280)

Here, it is clear that the identi�ed transfer function with the input u (t) is equal to the sum
of the transfer function Ĝup (s). Since Ĝup (s) is asymptotically stable for p = 1, . . . ,m for
hypothesis, the identi�ed transfer function Ĝu (s) is also asymptotically stable. �

Proof of Theorem 4.9. Starting from the de�nition of ou (ti, tj) described in (4.10), we have

ou (ti, tj) =

+∞∫
0

u (ti − ψ)

 +∞∫
0

u (tj − ξ) k (ψ, ξ) dξ

 dψ (4.281)

=

+∞∫
0

m∑
p1=1

ap1up1 (ti − ψ)

 +∞∫
0

m∑
p2=1

ap2up2 (tj − ξ) k (ψ, ξ) dξ

 dψ (4.282)

=

m∑
p1=1

m∑
p2=1

ap1ap2

+∞∫
0

up1 (ti − ψ)

 +∞∫
0

ap2 (tj − ξ) k (ψ, ξ) dξ

 dψ (4.283)

=
m∑

p1=1

m∑
p2=1

ap1ap2o
up,uh (ti, tj) (4.284)

as we wanted to shown. �
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CHAPTER 5

Manifold regularization for
non-linear dynamic systems

identification

This chapter presents a novel nonparametric approach to the identi�cation of nonlinear
dynamical systems based on the manifold regularization explained in 1.4 in semi-supervised
settings.

The proposed methodology exploits an arti�cially augmented dataset, obtained without
running new experiments on the plant, in order to learn the intrinsic manifold where the
regressors lie. The knowledge of the manifold acts as a prior information on the system,
that induces a proper regularization term on the identi�cation cost. The new regularization
term, as opposite to the standard Tikhonov one, enforces local smoothness of the function
along the manifold. A graph-based algorithm tailored to dynamical systems is proposed to
generate the augmented dataset. The hyperparameters of the method, along with the order
of the system, are estimated from the available data. Numerical results on a benchmark
Nonlinear Finite Impulse Response (NFIR) system show that the proposed approach may
outperform the state of the art nonparametric methods.

The content of this Chapter is partially taken from the scienti�c publications [43, 78, 79]
written by this Thesis author and his Ph.D. tutors. The remainder of the Chapter is orga-
nized as follow:

• Section 5.1 explains why the manifold regularizer can be a suitable approach in system
identi�cation;

• Section 5.2 introduces the problem that is tackled in the next sections;

• Section 5.3 brie�y recalls the concept of manifold regularization explained in more
details in Section 1.4;

• Section 5.4 presents a way to select unsupervised regressors in the case of NFIR sys-
tem identi�cation;

• Section 5.5 illustrates a methodology for the hyperparameters tuning;
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• Section 5.6 delves into the regressors graph de�nition needed to employ the manifold
regularization;

• Section 5.7 reports some numerical experiments that show the proposed method per-
formance;

• Section 5.8 �nishes the chapter with some concluding remarks;

5.1 Background and motivation
Semi-supervised learning is not a new concept in data-driven function mapping and has
been widely used both in classi�cation [27] and regression [87] problems. In both cases, the
aim is to learn the function that generates the output. When, in addition to the supervised
data, other inputs are available (without the corresponding output), their position in the
regressors space gives additional information about the values of the unknown outputs [27].

It becomes clear that, whenever the input points belong to a manifold in the regressors
space, their distribution provides additional information about the function to learn. Con-
sider a classi�cation problem where only some (labeled) points are known to belong to a
certain class, whereas the others (unlabeled) correspond to an unknown class. Intuitively,
if regressors lie on a manifold, the class of unlabeled points is likely to be the same of the
nearest (along the manifold) labeled ones, as explained in details in Section 1.4. This ra-
tionale can be extended to dynamical systems. As an example, consider the linear Finite
Impulse Response (FIR) model:

yi = ui + ui−1 + ei, (5.1)

where
ui = 0.8ui−1 + ηi (5.2)

and the terms ei and ηi are IID noises with 0 mean and variance 1. Figure 5.1 depicts a
random sampling of the regressors xi = [ui, ui−1]

> ∈ R2×1 over a given time window for
model (5.1).

It can be noticed that, due to the intrinsic correlation among the regressors components in
dynamical models, the position of the points within the regressors space is not random. In-
stead, one may argue that the points are likely to lie on a certain manifold. This observation
is con�rmed if Principal Component Analysis (PCA) [44] is applied to the data of Figure 5.1:
in fact, the �rst principal component can explain 93% of the data variance. This means that
one dimension can be neglected without signi�cant loss of information and, therefore, bias
and variance can be e�ectively traded o� to improve the model estimate. In this work, the
case of dynamical systems will be treated for the �rst time.

5.2 Problem formulation
y (ti) = ğ (u (ti − 1) , · · · , u (ti−nu)) + e (ti) (5.3)

where

• u : R→ R is the input signal;

• y : R→ R is the output signal;
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Figure 5.1: Regressor sampling for the system in (5.1).

• ti = i · Ts, with i ∈ Z, are the time instants selected by the sampling process and
Ts ∈ R+ is the sampling period;

• nu is the order of the system;

• ğ : Rnϕ×1 → R, with nϕ = nu, is a function that describes the model behavior;

• e : R→ R is the noise term.

The samples of the noise are considered IID and the sampling period is considered to be
known. For compactness sake, as in Section 2.1, the i-th sample of the input, output and
noise signal are indicated, respectively, with ui = u (ti), yi = y (ti) and ei = e (ti). Now,
the recursive equation 2.68 can be written as

yi = ğ (xi) + ei (5.4)

where
xi =

[
ui−1 · · · ui−nu

]>
∈ Rnx×1 (5.5)

The function ğ characterize the behavior of the system and it is considered unknown in the
identi�cation problem. An estimation of the model order nx will be provided in Section 5.5.

Furthermore, we suppose that two di�erent datasets are available: a supervised dataset DS
and an unsupervised dataset DU .

Ds = {(ui, yi) |i = 1, . . . , nTs} Supervised dataset (5.6)
Du = {ui|i = nTs + 1, . . . , nT } Unsupervised dataset (5.7)

where nTs is the number of supervised samples, nTu is the number of unsupervised samples
and nT = nTs + nTu is the total number of samples.
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For compactness sake, we will represent the observations and the regressors in a matrix
form. Concerning the supervised dataset DS , we de�ne the output vector yS as:

y =
[
ynx+1 · · · ynTs

]>
∈ R1×nS (5.8)

where nS = nTs − nx is the number of output samples that can be employed for the
identi�cation part, given the model order nx. In the same way, it is possible to construct
the nS supervised model regressors as

xSi =
[
ui−1 · · · ui−nu

]>
∈ Rnx×1 for i = (nx + 1) , · · · , nTs (5.9)

Analogously, nU = nTu − nx unsupervised model regressors

xUi =
[
unTs+i · · · unTs+i−nu+1

]>
∈ Rnx×1 i = (nx + 1) , · · · , nTu (5.10)

For simplicity, we de�ne the generic regressor ϕ (t) as:

xi =

{
xSi+nx 1 ≤ i ≤ nS
xUi+nx−nS nS + 1 ≤ i ≤ n

(5.11)

where n = nS + nU is the total number of regressors.

The aims of this chapter are:

• to develop a semi-supervised learning method to identify the NFIR system by em-
ploying the information contained both in DS and in DU ;

• to devise a method to arti�cially generate the unsupervised data;

• to propose a rigorous guideline for tuning the parameters of the algorithm;

• to leverage the dynamic properties of the system that we want to identify;

In order to do so, the manifold regularization, explained in 1.4, is employed. For this rea-
son, the next section is dedicated to brie�y recall this argument, for more details refer to
Section 1.4.

5.3 Manifold regularization
This section brie�y recalls how unsupervised data can be e�ectively employed in a learning
framework (for more details see Section 1.4). In particular, the use of additional unsuper-
vised data helps approximate the manifold where the regressors evolve. The discussion of
the manifold regularization concepts will use the notation introduced in Section 5.2.

Section 5.1 gave intuitive motivations of how the geometry of the inputs space acts as ad-
ditional information that can be employed for learning. In order to embed this notion into
a learning framework, we can resort to the following rationale. In the classical literature
on learning from examples [17, 44, 125], the aim is to estimate the conditional distribution
py|x=x∗ describing possible outputs values, given the corresponding input regressor x∗. To
do this, some regressors xSi are sampled from the marginal distribution px and then some
outputs yi are drawn from py|x=xSi

to build the dataset DS .
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Unsupervised examples xUi can also be extracted according to the marginal distribution
px and used to build the dataset DU As explained in Section 1.4, the knowledge of px can
be useful if a speci�c assumption is made about the connection between the marginal and
the conditional distributions [11]. For example, one may assume that, if two points x1,x2

are close according to some metrics in px, then the conditional distributions py|x=x1
and

py|x=x2
are similar. In other words, the conditional probability distribution py|x=x∗ varies

smoothly along the intrinsic geometry of px.

The aforementioned assumption can be stated as follows [11]:

Assumption 5.1 (Semi-supervised smoothness). The conditional distribution py|x=x∗ varies
smoothly alongside x∗ and its intrinsic geometry px.

Note that, if Assumption 5.1 holds, the solution is constrained to be locally smooth, i.e.,
smooth over the manifold where the regressors lie. Therefore, it can be formulated as a
constraint (or an equivalent regularization term) for the learning algorithm. An e�ective
way to write a regularization term enforcing Assumption 5.1 has been �rst proposed in [24].
In detail, if the support of px is a compact manifold G ⊂ Rm, a common indicator of the
degree of smoothness over the manifold is

Sg =

∫
G
‖∇g (x)‖2 px (x) dx =

∫
G
g (x)∆g (x) px (x) dx (5.12)

where∇ and∆ are, respectively, the gradient and the Laplace-Beltrami operators along the
manifold G.

The main idea behind such a manifold regularization is that, if Assumption 5.1 holds, the
gradient of g (along G), and so Sg , must be small. Then, minimizing Sg is a way to leverage
Assumption 5.1. From (5.12), we see that the Laplacian is related to the squared norm of the
gradient.

Unfortunately, px and G are usually unknown and the smoothness index Sg in (5.12) can-
not be computed. One way to model the manifold is by employing a regressor graph [10,
13, 14, 36]. The graph is a weighted and completely connected graph, with the (supervised
and unsupervised) regressors as its vertices, for more details see Section 1.4.2. The intrin-
sic structure of the regressors space is thus revealed by both supervised and unsupervised
points. The weight of each edge, where σe ∈ R is a tuning parameter, is de�ned as

wi,j = e
−
‖xi−xj‖2

2σ2
e (5.13)

A high value of wi,j indicates that two regressors are similar. Notice that the concept of
“smoothness over a manifold” expressed through (5.12) has been casted into a discrete graph
domain.

Consider the Laplacian graph matrix

L = D −W (5.14)

whereD ∈ Rnr×nr is the diagonal matrix whose i-th diagonal element is

di,i =

nr∑
j=1

wi,j (5.15)

andW ∈ Rnr×nr is the matrix composed by the weights wi,j .
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It can be shown that using exponential weights the operator L de�ned on the graph con-
verges, with large amount of data, to the Laplace-Beltrami operator ∆ [9, 10]. By consider-
ing graph derivatives [114], the term (5.12) can be represented by the Laplacian quadratic
form [10, 11, 114]:

Sg ' gLg>, (5.16)

where the vector
g =

[
g (x1) · · · g (xn)

]
∈ R1×n (5.17)

depends only upon the unknown g and the input regressorsI. It follows that both supervised
and unsupervised datasets can be employed for weighting Sg within a learning task for
regularizing the manifold. We will refer to (5.16) as the manifold regularization term.

Remark 5.1. From the above discussion, it comes out that, if Assumption 5.1 is not satis�ed,
the use of an additional unsupervised dataset is not bene�cial. However, in all cases where
Assumption 5.1 holds, the proposed approach may take advantage of such prior information
to more accurately identify the unknown system.

Suppose now that ğ belongs to a RKHS H de�ned using a kernel k : R1×n × R1×n → R.
The kernel can depend by some hyperparameters ψ. The typical formulation consists into
�nding the best function ĝ according to the criterion [97, 101, 111]:

ĝ = arg min
g∈H

{
‖y − gS‖22 + τ‖g‖2H

}
, (5.18)

where gS ∈ R1×nS is the part of g that correspond to the supervised regressors, ‖g‖2H is
the Tikhonov regularizer term and τ ∈ R+ controls the regularization strength.

The solution to (5.18) can be found by employing the representer theorem [40, 61, 111]:

ĝ (x∗) =

nS∑
i=1

cik (xi,x
∗) (5.19)

for a nS-tuple
c =

[
c1 · · · cnS

]>
∈ RnS×1. (5.20)

Making use of (5.19), the Tikhonov regularization term of (5.18) can be restated as

‖g‖2H = c>KSc (5.21)

whereKS ∈ Rn×n is a semide�nite positive and symmetric matrix (also called Gram matrix
or kernel matrix) whose (i, j) entry is k (xi,xj). The matrix KS is formed by using only
the supervised regressors.

Using (5.19), we can write the minimization problem (5.18) in such a way that it depends
only on the unknown vector c ∈ Rn×1:

ĉ = arg min
c∈Rn×1

{∥∥∥yS − c>KS

∥∥∥2
2

+ τc>KSc

}
. (5.22)

IThe structure of the regularization term in (5.16) is shared by many manifold learning methods, where L
is substituted by other symmetric matrices [25]. The reason is that such algorithms are still based on Assump-
tion 5.1, but they formalize it from di�erent perspectives.
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It is then possible to �nd the estimate of the vector c by solving the system:

(KS + τInS ) ĉ = y> (5.23)

In order to include information about the local smoothness of the function (using the unsu-
pervised data points), it is meaningful to add the manifold regularization term (5.16) to (5.18),
leading to [11]:

ĝ = arg min
g∈H

{
‖y − gS‖22 + τ‖g‖2H + µgLg>

}
(5.24)

where µ ∈ R+ plays the same weighting role as τ .

It is possible to show that the representer theorem still holds for the cost function (5.24) and
the solution can be written by considering all n = nS + nU regressors [11]:

ĝ (x∗) =
n∑
i=1

cik (xi,x
∗) (5.25)

for a n-tuple
c =

[
c1 · · · cn

]>
∈ Rn×1. (5.26)

The vector g, introduced in (5.16), can now the be rewritten as g = c>K , whereK ∈ Rn×n
is the kernel matrix constructed considering both supervised and unsupervised regressors.
Notice that K depends on the kernel hyperparameters ψ and may depend also on some
hyperparameters ρ used to generate the augmented dataset and the regressors graph.

Now, by means of (5.25), it is possible to write the minimization problem (5.24) in such a
way that it depends only on the unknown vector c ∈ Rnr×1:

ĉ = arg min
c∈Rnr×1

{∥∥∥y − c>PK∥∥∥2
2

+ τc>Kc+ µc>KLKc

}
(5.27)

where

y =
[
y 01×nU

]
∈ R1×n (5.28)

P =

 InS 0nS×nU

0nU×nS 0nU×nU

 ∈ Rn×n (5.29)

that is such that P ∈ Rn×n, permits to select only the elements of K explaining the nS
supervised data points.

Since (5.27) is now quadratic in c, its minimization can be carried out analytically and the
minimizer is found by solving the linear system:

(PK + τIn + µLK) ĉ = y> (5.30)

Remark 5.2. The role of additional data can be clearly seen in (5.30). In fact, the unsu-
pervised points contribute here to the overall estimated function via the matrices K and
L.
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5.4 A criterion for data augmentation
In dynamical system identi�cation, unlike many static semi-supervised learning applica-
tions, the unsupervised data set DU should better be seen as a design parameter, rather
than an input of the problem. In some cases,DU may contain some input time series which
are likely to excite the system dynamics in future operating conditions (when the model
will be used). Alternatively, DU could be chosen to enforce Assumption 5.1 to be true.

Since Assumption 5.1 requires only that, inside the same high-density region, the regressors
have a similar corresponding output (namely their di�erence must be “small”), a reasonable
method is to generate the unsupervised regressors in the neighborhood of the supervised
ones, where, if the system is smooth enough, they should have a similar corresponding
output. This approach will generate a regressors set looking as the one exempli�ed in Fig-
ure 5.2, where it is possible to list nTs regions, containing a supervised regressor and some
unsupervised ones.

A possible algorithm to select DU as discussed above is as follows. Let DU be the union of
p unsupervised datasets

DU =

p⋃
j=1

DjU (5.31)

DjU =
{
uji

∣∣∣ i = 1, . . . , nTs

}
(5.32)

where uji = ui + vji , v
j
i is a random variable and p ∈ N is a free parameter of the method.

From such p datasets, it is possible to determine the quantities de�ned in Section 5.2. Since
the unsupervised points are generated in correspondence of the supervised ones, we have
nS employable unsupervised regressors for each of the p datasets. This leads to nU = p ·nS
unsupervised regressors xji ∈ Rnx×1, for j = 1, . . . , p. Each one of them is such that,
according to (5.10), for m ≤ t ≤ nS − 1:

xji =
[
uji−1 · · · uji−nu

]>
∈ Rnx×1 i = (nx + 1) , · · · , nTu (5.33)

The value of vji determines the distance of the p unsupervised points from the supervised
one. Therefore, vji has to be small enough to guarantee that the system output does not vary
signi�cantly inside these regions. A reasonable criterion for its selection is to consider that
the regions should not mix with each other, since this might lead to non-smooth functions.

A possible way is to use a uniform distribution:

vji ∼ U (−h, h)
i = 1, . . . , nTs

j = 1, . . . , p
(5.34)

where h ∈ R+ determines the area of the unsupervised points regions. To impose distinct
regions, the following inequalities must hold:∥∥∥xji − xSi ∥∥∥

2
≤
d

2

i = nx + 1, . . . , nTs

j = 1, . . . , p
(5.35)
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where d denotes the Euclidean distance between the two closest supervised regressors. Af-
ter some computations, it can be shown that (5.35) can be written as:

nx∑
q=1

(
vji

)2
≤

(
d

2

)2
i = nx + 1, . . . , nTs

j = 1, . . . , p
(5.36)

Since
∣∣∣vji ∣∣∣ ≤ h (it is generated from the random variable (5.34)), the inequalities (5.36) hold

if
nx∑
q=1

h2 ≤
(
d

2

)2

(5.37)

Recalling that h ≥ 0, this corresponds to

h ≤
d

2
√
nx

(5.38)

This condition imposes a constraint for h to maintain nTs distinct regions. To make such a
constraint more or less conservative, a tuning parameter α ∈ R can be introduced, allowing
to regulate the region maximum area, as, e.g., as follows:

h =
d

2α
√
m
. (5.39)

In the above criterion, α = 1 corresponds to the threshold between mixed regions (achieved
using α < 1) and completely distinct regions (α > 1). In Figure 5.2, an example of super-
vised regressors and unsupervised regressors selected with the proposed methodology (with
nx = 2, p = 5 and α > 1) is reported.

Remark 5.3. The regressors xji may improve the quality of the supervised estimate only
if they lie on the same manifold spanned by the xSi . This is indeed not di�cult to obtain.
Suppose that the input signal ui is a zero-mean white noise with variance of γ2, i.e. ui ∼
WN

(
0, γ2

)
. We have that the regressors xSi are composed by lagged version of the white

noise ui. Now, assume that uji = ui + vji , with ui ⊥ vjq , ∀i, j, q, and vji ⊥ v
q
i , ∀j 6= q. Then,

it follows that uji ∼WN
(
0, γ̃2

)
, with

γ̃2 = γ2 +
4h2

12
= γ2 +

h2

3
. (5.40)

Therefore, xji will span the same manifold of xSi , but, since the underlying process has
greater variance, the additional regressors will cover a greater area of the regressors man-
ifold. Thus, the use of additional regressors is useful to better approximate the manifold.
The same reasoning applies when ui is a stationary zero-mean stochastic process and the
independence assumptions hold.

5.5 Estimating hyperparameters and model order
The proposed method requires the tuning of the hyper-parameters ζ = [ψ,ρ, µ, τ ]. In [11],
no explicit guidelines for hyperparameters tuning is given. In this work, the hyperparame-
ters ζ is estimated via Generalized Cross-Validation (GCV) [44], by relying on the available
data.
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Figure 5.2: An example of unsupervised regressors selection, for a system
with nx = 2 using p = 5. The plot represents the supervised regressors

(red crosses) and the unsupervised regressors (blue circles).

This formulation, introduced in Section 1.5.2, computes an approximation of the Leave
One Out Cross-Validation (LOOCV) score in the following way. Recall that, in Tikhonov-
regularized estimation, the model prediction ŷ ∈ R1×n can be computed by referring
to (5.19) and (5.23) as

ŷ> = KS ĉ = KS (KS + τIn)−1 y> = SS (ζ)y> (5.41)

where SS (ζ) = KS (KS + τIn)−1.

In the case of the semi-supervised approach, the prediction ŷ ∈ R1×n can be cast by refer-
ring to (5.25) and (5.30) as

ŷ> = BKb̂ = BK (PK + τInr + µLK)−1 y> = S (ζ)y> (5.42)

whereS (ζ) = BK (PK + τInr + µLK)−1 andB =
[
In 0n×nrU

]
∈ Rn×nr is used

to select only the supervised components. Following [44], the number of e�ective degrees
of freedom of a linear smoother, as in our case, can be found as:

dof (ζ) = Tr
(
S̄ (ζ)

)
S̄ (ζ) = {S (ζ) ,SS (ζ)} (5.43)
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The quantity in (5.43) can be used to e�ciently compute the GCV score. The hyperparam-
eters estimate is then computed as:

ζ̂m = arg min
ζ

{Jm (ζ)} (5.44)

= arg min
ζ


1

n

N∑
t=1

y (t)− ŷ (t)

1−
dof (ζ)

n


2 (5.45)

where y and ŷ are the observed output and prediction at a speci�c time instant t. The
subscript m on Jm (ζ) and ζ̂m is used to highlight the dependency on the model order
m. Since the model order is a discrete variable, the optimization becomes hybrid. For this
reason, it is estimated as described in [97]. Speci�cally, the estimated order m̂ is obtained
by computing Jm (ζ) for a grid of chosen order values, such that:

m̂ = arg min
m

{
Jm

(
ζ̂m

)}
(5.46)

In light of the same rationale, we �xed the value of p (the number of additional datasets) in
our simulations.

5.6 Graph topology selection
The method presented in previous sections is strongly related to the well-known approach
for manifold regularization in [11]. In such a paper, it was implicitly assumed that all the
regressors are connected. In this work, instead, the role of the dynamic dependency among
the regressors can be explicitly taken into consideration to determine the most suitable
structure of the graph describing the manifoldII.

To this end, �rstly we need to distinguish betweenIII:

Spatial connections among di�erent regressors in the regressor space, they are used to
constrain the outputs corresponding to close regressors to be similar;

Temporal connections among di�erent time samples of g
(
xSi
)
, they are used to con-

strain the time trajectories to be smooth.

Following the above distinction, we connect each additional regressor xji to its “parent”
xjS , and each xji to its “brothers” xqi , with j 6= q, for every time instant i. The output that
corresponds to the unsupervised regressors xji is forced to be “close” to the output of the
supervised regressor xSi from which they are generated. Consider now the time dimension
and assume that the input ui of the considered NFIR system is a zero-mean white noise
signal. Then, each regressor xSi is correlated to the nx − 1 regressors{

xSi−1, . . . ,x
S
i−nu+1

}
, (5.47)

as well as to the nx − 1 regressors{
xSi+1, . . . ,x

S
i+nu−1

}
. (5.48)

IIRecall that (5.16) penalizes the variations of the unknown function among the connected nodes (i.e., the
regressors), thus the choice of the graph topology plays a key role to enforce smoothness.

IIIIn the case of static systems, only spatial connections are meaningful, in that there is no time shift (nor
correlation) among the regressors and the outputs.
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Thus, we also need to connect the supervised regressors at di�erent time instants according
to the system memory (i.e. model order). Figure 5.3 shows an example of how regressors can
be connected according to the proposed approach (considering both spatial and temporal
connections).

ui−1

ui

x2
2

x3
2

xS
2

x1
2

x1
3

x2
3

xS
3

xS
4

x3
3

x1
4x3

4

x2
4

Figure 5.3: Example of connections in the regressor space setting the struc-
ture of the graph, with nx = 2, p = 3 and nTs = 3. Temporal connections

in dashed red and spatial connections in solid blue.

Remark 5.4. It is worth to point out that the proposed rationale is only one possible scheme
for connecting the regressors. One may also connect the unsupervised regressors at di�er-
ent time instants, e.g. xji with xji−1 and xji+1 in Figure 5.3. However, these additional links
in the regressors graph may impose a too strong condition on the set of possible functions to
be learned. In fact, consider Figure 5.4, where the solid line represents the true output, while
the measurements are denoted by yi]. Since each unsupervised regressor xji is connected to
its supervised “parent”xjS , their outputs are constrained to be similar, i.e. g

(
xji

)
≈ g

(
xSi
)
.

Temporal connections between xSi , xSi−1 and xSi+1 can also be imposed to constrain the
output of the function g to be smooth in time. However, since the unsupervised regressors
xji are generated by randomly perturbing the input sequence ui (see again Section 5.4), tem-
poral dependence may be partially lost, e.g., an admissible output behavior could turn out
to be the dotted blue curve of Figure 5.4 (which varies more rapidly than the observed one).
Therefore, the output at g

(
xj1

)
and g

(
xj2

)
should not be required to be smooth in time,
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but only to be similar to g
(
xS1
)

and g
(
xS2
)
, respectively. Connecting g

(
xji

)
at di�erent

time instants may instead lead to the dash-dotted green curve of Figure 5.4, which could be
not acceptable, unless additional prior knowledge on the output dynamics is available.

i1 2

y1

g
(
x1
1

)

g
(
x2
1

)

y2

g
(
x1
2

)
g
(
xS
1

)

Spatial connections

Temporal connections

g
(
x2
2

)

g
(
xS
2

)

yi

Figure 5.4: Representation of spatial and temporal connections in the time
domain: true output (black bold line), measured output (black squares), out-
put at supervised regressors (red crosses), output at unsupervised regres-
sors (blue circles), possible output trajectory in case of temporal connec-
tions among supervised regressors (blue dotted line) and possible trajectory
in case of temporal connections among both supervised and unsupervised

regressors (green dash-dotted line).

5.7 A numerical case study
We test the presented methodologies on the following NFIR system taken from [97]

yi = ui−1 + 0.6ui−2 + 0.35ui−3 + 0.9ui−4 + 0.35ui−5 + 0.2ui−6+

+ 0.2ui−7 + 0.5u2i−1 − 0.25u2i−4 + 0.75u3i−3 + 0.25ui−1ui−2

+ 0.5ui−1ui−3 − ui−2ui−3 + 0.5ui−2ui−4 + ei

(5.49)

where ei ∼ WGN (0, 0.2) is the measurement noise and u (t) ∼ WGN (0, 1) is the input
signal. The identi�cation is tackled using the Gaussian kernel

k (a, b) = λe−
‖a−b‖2
σ2 (5.50)

where ψ = [σ, λ] are positive kernel hyperparameters.

In particular, the following approaches are compared:

(Appr. 1) Tikhonov regression, as in (5.18) or in Section 2.3, with ζ = [τ,ψ];
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(Appr. 2) The approach of [11] where the hyperparameters are estimated via a grid search
strategy using a part of the data set for validation;

(Appr. 3) The Kernel-based approach of [97];

(Appr. 4) The proposed approach, as in (5.24), with ζ = [τ, µ,ψ,ρ].

The hyperparameter p, that governs how many unsupervised datasets to generate, is �xed
to p = 3. The SNR was set to 5 dB. In order to assess the overall performance of the estima-
tion methods, a supervised testing dataset DT of nT = 104 points is employed, generated
analogously toDS . UsingDT , it is possible to evaluate the Normalized Mean Absolute Error
(NMAE) metric:

NMAE =

∑nT
t=1

∣∣∣ŷ (t)− yT (t)
∣∣∣∑nT

t=1

∣∣∣yT (t)− yT
∣∣∣ , (5.51)

where ŷ (t) is the predicted test output in correspondence of a test regressor, yT (t) is the
true test output, and yT is the mean value of the test outputs. A Monte Carlo simulation
is carried out to show the statistical signi�cance of the proposed methodology, using 1000
runs. At each run, a di�erent generation of the random noise was considered. The hyper-
parameters of the proposed method were estimated on the training set via GCV.

The experimental setup problem is highly challenging: in fact, only nS = 30 supervised
data are available for training. The hyperparameters of the �rst and third approach are esti-
mated via marginal likelihood optimization [95, 97], according to the original formulations
of the methods. For the second approach, we used nV = 10 data for validation (drawn from
the original dataset). Once the hyperparameters are estimated, the model is identi�ed on
all the available data.

Figure 5.5 shows the simulation results over all the Monte Carlo runs. In this critical exam-
ple, the proposed approach statistically outperforms all the state of the art methods, thus
showing the e�ectiveness of the approach in the considered setting.

5.8 Chapter concluding remarks
In this chapter, it is presented a method for learning nonlinear dynamical systems by em-
ploying augmented datasets. The additional data are generated by perturbing the measured
regressors. In order to leverage such information, manifold regularization is employed,
which uses additional information on the distribution of the input regressors. The dynami-
cal structure of the NFIR systems has been taken into consideration to best select the graph
connections. Numerical results showed that the proposed approach may outperform the
state of the art methods. Future research will be devoted to:

• an extensive numerical assessment of the method;

• the extension of the approach to models with auto-regressive terms;

• the development of a data-driven graph topology selection policy.
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Figure 5.5: A numerical comparison of the proposed approach with the
state of the art methods.
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CHAPTER 6

Bayesian manifold regularization

This chapter presents a novel Bayesian interpretation of the manifold regularization ra-
tionale. In particular, it is shown that the manifold regularization term corresponds to an
additional likelihood term that imposes smoothness along the manifold of the estimated
function. The proposed approach allows de�ning the variance of the prediction and the pos-
sibility to employ the marginal likelihood for the hyper-parameters estimation, as shown
in Section 1.5.3.

Results on a benchmark nonlinear system show improved estimation performance with
respect to employing only Tikhonov regularization or manifold regularization equipped
with the Generalized Cross-Validation (GCV) estimator.

The work presented in this Chapter was developed with the collaboration of Prof. Alessan-
dro Chiuso. The remainder of the Chapter is organizer as follow:

• Section 6.1 brie�y synthesizes the Bayesian interpretation of the normal Tikhonov
regularization;

• Section 6.2 introduces the new likelihood term and explains how it in�uences the
posterior distribution;

• Section 6.3 explains how to compute the marginal likelihood needed to tune the
hyper-parameters;

• Section 6.4 contains some numerical examples of the proposed method;

• Section 6.5 �nishes the chapter with some concluding remarks;

6.1 Bayesian interpretation of the Tikhonov
regularization

This works aims to learn a generic, possibly nonlinear, mapping g : X → R, where X ⊆
Rd×1, such that

yi = g (xi) + ei (6.1)

where xi ∈ X and yi ∈ R are the i-th samples of, respectively, the system input regressor
and output, and ei ∼ N

(
0, β2

)
are IID measurements additive noises.
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Remark 6.1. This model corresponds to the one described in Section 1.2.2 for the identi-
�cation of a static model. However, this formulation is general enough to comprehend the
dynamical system case. In particular, when x is composed by the past input-output sam-
ples this formulation is equivalent at the one used in Section 2.1.4 for the non-linear system
identi�cation. Furthermore, it is trivial to change g (xi) with the functional used for the
identi�cation of the impulse-response of a linear system, as shown in 2.1.

Suppose that we have n observations of regressor-output data

D = {(xi, yi) |1 ≤ t ≤ n} (6.2)

and an additional regressor x∗. In the Bayesian settings, the aim is to �nd the distribution
of the output y∗ given its corresponding regressor x∗ and the dataset D.

In order to so, it is necessary to de�ne a prior distribution on the unknown function g. As
shown in Section 1.3, we can use a Gaussian process distribution, i.e.

g ∼ GP (0X , k) (6.3)

where 0X is the function that returns 0 for every regressor inside X and k : X × X → R
is a valid kernel, i.e. its symmetric and positive semi-de�nite. Therefore, for the de�nition
of Gaussian process, we can write:

p (g, g∗ |X,x∗ ) = N

 g>
g∗

 ∣∣∣∣∣∣
 0n×1

0

 ,
 K k∗ (x∗)

k∗ (x∗)> k (x∗,x∗)

 (6.4)

where g∗ = g (x∗) and

g =
[
g (x1) · · · g (xn)

]
∈ R1×n (6.5)

k∗ (x∗) =
[
k (x1,x

∗) · · · k (xn,x
∗)
]>
∈ Rn×1 (6.6)

K =


k (x1,x1) · · · k (x1,xn)

... . . . ...

k (xn,x1) · · · k (xn,xn)

 ∈ Rn×n (6.7)

X =
[
x1 · · · xn

]
∈ Rd×n (6.8)

Then, from the model (6.1), we can write the likelihood distribution of the measurements
as

p (y, y∗ |g, g∗,X,x∗ ) = N

 y>
y∗

 ∣∣∣∣∣∣
 g>
g∗

 ,
 β2In 0n×1

01×n β2

 (6.9)

where
y =

[
y1 · · · yn

]
∈ R1×n (6.10)
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Since both the prior (6.4) and likelihood (6.9) are Gaussian distributed, it is possible to em-
ploy the conjugacy relations of the normal distribution [17] to obtain the marginal distri-
bution

p (y, y∗ |X,x∗ ) = N

 y>
y∗

 ∣∣∣∣∣∣
 0n×1

0

 ,
 K + β2In k∗ (x∗)

k∗ (x∗)> β2 + k (x∗,x∗)


(6.11)

this is the joint distribution of the output that corresponds to the regressor x∗, the outputs
of the given dataset y and their corresponding regressors. Therefore, it is possible to obtain
the desired distribution as

p (y∗ |y,X,x∗ ) =
p (y, y∗ |X,x∗ )

p (y |X,x∗ )
(6.12)

that can be easily computed since we are dealing with normal distribution [17]

p (y∗ |y,X,x∗ ) = N (y∗ |ρ∗T , σ∗T ) (6.13)

where

ρ∗T = k∗ (x∗)>
(
K + β2In

)−1
y> (6.14)

σ∗T = β2 + k (x∗,x∗)− k∗ (x∗)>
(
K + β2In

)−1
k∗ (x∗) (6.15)

here, we can see that the mean of the prediction distribution ρ∗T is equal to the estimate
obtained using the Tikhonov regularization with τ = β2. For this reason, this Bayesian
approach, known as Gaussian regression, can be considered as the Bayesian interpretation
of the Tikhonov regularization. This provides additional information of what the Tikhonov
regularization do, for more details refer to Section 1.3 or [104].

In the next section, as a new contribution of this thesis, we will add a new likelihood term
that results in an additional regularization term that corresponds to the manifold regular-
izer.

6.2 Bayesian interpretation of the manifold
regularization

Before delving into the Bayesian interpretation of the manifold regularization, it is neces-
sary to introduce a new important mathematical object: the incidence matrix of the graph.

As explained in Section 1.4, the manifold regularization term can be written as

gLg> =
n∑
i=1

n∑
j=1

wi,j (xi − xj)2 (6.16)

where L ∈ Rn×n is the Laplacian matrix of the used regressors graph [9, 11, 114] and wi,j
is the weight of the edge between the regressors xi and xj . If the graph is not complete,
the weight of the missing edges can be considered equal to 0. To understand how to de�ne
the regressors graph refers to Section 1.4.2 or to Section 5.6 when the system under exam
is dynamic.
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In Section 1.4, the Laplacian matrix was de�ned as:

L = D −W (6.17)

whereD is a diagonal matrix whose i-th diagonal element is

di,i =
n∑
j=1

wi,j (6.18)

andW is the weighted adjacency matrix of the regressors graph. However, it is also possible
to show that

L = R>R (6.19)

whereR ∈ Rm×n is one of the possible weighted oriented incidence matrices of the regres-
sors graph and m is the number of edges on the graph. Let us denote with ai the weight of
the i-th edge of the graph, then the entry (i, j) ofR is

Ri,j =


√
ai if the i-th edge enters the j-th node
−√ai if the i-th edge leaves the j-th node
0 otherwise

(6.20)

Therefore, the matrix R is a sparse matrix whose rows have only two elements non-zero
elements.

Remark 6.2. The incidence matrix can be seen as a discretization of the gradient opera-
tor on the regressors manifold that is approximated using the regressors graph. To better
understand this concept, consider the graph in Figure 6.1 and the generic 4 samples signal

s =
[
s1 s2 s3 s4

]
∈ R1×4. (6.21)

Then, it is possible to note that

Rs> =
[
w12 (s1 − s2) w23 (s2 − s3) w34 (s3 − s4)

]>
. (6.22)

that can be seen as the weighted discrete gradient of the signal s.

3 × 4

e1
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e3
1

2
3

4

1 2 3 4

e1

e2

e3

R =





√
w12 −

√
w12 0 0

0
√
w23 −

√
w23 0

0 0
√
w34 −

√
w34





Figure 6.1: Example of weighted oriented incidence matrix for an undi-
rected graph with four nodes (red circles) and three edges (dashed blue

lines).

The main idea behind the Bayesian Manifold regularization is to introduce m new arti�cial
measurements z ∈ R1×m that are sampled as follows

z> = Rg> + r> (6.23)
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where r> ∼ N
(
0m×1, η

2Im
)

and η2 ∈ R+. We will assume that r and e = [e1, . . . , en] ∈
R1×n are independent random variables.

Remark 6.3. Since Rg> corresponds to the gradient of g along the regressors graph, it is
possible to impose smoothness by constraining the arti�cial measurements to 01×m. For
this reason, the posterior distribution will be computed considering that the arti�cial mea-
surements z to be known and equal to 01×m.

With this new measurements, the likelihood distribution becomes

p (y, z, y∗ |g, g∗,X,x∗ ) = N



y>

z>

y∗


∣∣∣∣∣∣∣∣∣ρ
∗
lh,Σ

∗
lh

 (6.24)

where

ρ∗lh =


g>

Rg>

g∗

 =


In 0n×1

R 0m×1

01×n 1


 g>
g∗

 (6.25)

Σ∗lh =,


β2In 0n×m 0n×1

0m×n η2Im 0m×1

01×n 01×m β2

 (6.26)

using this likelihood with the Gaussian process prior (6.4), it is possible to compute the
marginal likelihood using the conjugacy formula of the normal distribution [17]. Obtaining:

p (y, z, y∗ |X, x∗ ) =

∫
p (y, z, y∗|g, g∗) p (g, g∗ |X,x∗ ) dgdg∗ (6.27)

= N



y>

z>

y∗


∣∣∣∣∣∣∣∣∣


0n×1

0m×1

0

 ,Σ∗mlh
 (6.28)

where

Σ∗mlh =


K + β2In KR> k∗ (x∗)

RK RKR> + η2Im k∗ (x∗)

k∗ (x∗)> k∗ (x∗)>R> β2 + k (x∗, x∗)

 (6.29)

This is the joint distribution of the output that corresponds to the regressor x∗, the output
of the given dataset y with their corresponding regressors and the arti�cial variables z.
Therefore, in a similar way as the case without the manifold regularization, it is possible to
obtain the desired distribution as

p (y∗|y, z) = N (y∗ |ρ∗M , σ∗M ) (6.30)
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where

ρ∗M = k∗ (x∗)>
[
In R>

] K + β2In KR>

RK RKR> + η2Im

−1  y>
z>

 (6.31)

σ∗M = β2 + k (x∗, x∗) (6.32)

− k∗ (x∗)>
[
In R>

] K + β2In KR>

RK RKR> + η2Im

−1  In
R

k∗ (x∗)

(6.33)

In order to show that this method corresponds to the Manifold regularization, the mean
of the prediction ρ∗M needs to be equal to the manifold regularization estimate, as show in
Section 1.4. In other words, we need to show that

ρ∗M = k∗ (x∗)> (K + τIn + µLK)−1 y> (6.34)

for some µ ∈ R+ and τ ∈ R+. For this reason, let us focus on the term ρ∗M ∈ R.

6.2.1 Mean of the posterior
Let us start by recalling the block matrix inverse formula [12] A B

C D

−1 =

 Q −QBH

−HCQ H +HCQBH

 (6.35)

whereA andB are two square and invertible matrices,C ,D are two matrices of a coherent
dimension and

H = D−1 (6.36)
Q = (A−BHC)−1 . (6.37)

Therefore: K + β2In KR>

RK RKR> + η2Im

−1 =

 Q −QKR>H

−HRKQ H +HRKQKR>H


(6.38)

where

H =
(
RKR> + η2Im

)−1
∈ Rm×m (6.39)

Q =
(
K −KR>HRK + β2In

)−1
∈ Rn×n. (6.40)

This fact can be used to rewrite ρ∗M as:

ρ∗M = k∗ (x∗)>
[
In R>

] Q −QKR>H

−HRKQ H +HRKQKR>H

 y>
z>

 (6.41)
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Here, we can employ the fact that the arti�cial measurements z are equal to 01×m, as de-
scribed in Remark 6.3. Obtaining

ρ∗M = k∗ (x∗)>Qy> − k∗ (x∗)>R>HRKQy> (6.42)

= k∗ (x∗)>
(
In −R>HRK

)
Qy>. (6.43)

After some mathematical steps, we can write

ρ∗M = k∗ (x∗)>
(
In −R>HRK

)
Qy> (6.44)

= k∗ (x∗)>K−1K
(
In −R>HRK

)(
K + β2In −KR>HRK

)−1
y> (6.45)

= k∗ (x∗)>K−1
(
K −KR>HRK

)
︸ ︷︷ ︸

P

(
K + β2In −KR>HRK

)−1
y> (6.46)

= k∗ (x∗)>K−1P
(
P + β2In

)−1
y> (6.47)

Now, recall the Woodbury formula [52] that states

(A+UCV )−1 = A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1 (6.48)

where A and C are two square invertible matrices and U and V are two matrices of co-
herent dimension. This can be employed to simplify ρ∗M , considering A = P , C = β2In
and V = U = In, we obtain

ρ∗M = k∗ (x∗)>K−1P
(
P + β2In

)−1
y> (6.49)

= k∗ (x∗)>K−1P
[
P−1 − P−1

(
β−2In + P−1

)−1
P−1

]
y> (6.50)

= k∗ (x∗)>K−1
[
PP−1 − PP−1

(
β−2P + PP−1

)−1]
y> (6.51)

= k∗ (x∗)>K−1
[
In −

(
β−2P + In

)−1]
y> (6.52)

Here, it is possible to use the Woodbury formula [52] in reverse withA−1 = V = U = In
and C−1 = β−2P

ρ∗M = k∗ (x∗)>K−1
[(
In + β2P

)−1]
y> (6.53)

= k∗ (x∗)>
(
K + β2P−1K

)−1
y> (6.54)

= k∗ (x∗)>
(
K + β2

(
K −KR>HRK

)−1
K

)−1
y> (6.55)

= k∗ (x∗)>
(
K + β2

(
In −R>HRK

)−1
���

�
K−1K

)−1
y> (6.56)

= k∗ (x∗)>
(
K + β2

(
In −R>

(
RKR> + η2Im

)−1
RK

)−1)−1
y> (6.57)
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Using for one last time the Woodbury formula [52] in reverse with A−1 = In, U = R>,
V = RK and C−1 = η2Im, we have:

ρ∗M = k∗ (x∗)>

K + β2

(In +R>
1

η2
ImRK

)−1−1−1 y> (6.58)

= k∗ (x∗)>
(
K + β2

(
In +

1

η2
R>RK

))−1
y> (6.59)

= k∗ (x∗)>
(
K + β2In +

β2

η2
R>RK

)−1
y> (6.60)

= k∗ (x∗)>
(
K + β2In +

β2

η2
LK

)−1
y> (6.61)

Therefore, the mean of the prediction distribution ρ∗M is equal to the estimate obtained
using the manifold regularization with β2 = τ and µ = β2

η2
. As we wanted to show.

Remark 6.4. Since we have shown that:

ρ∗M = k∗ (x∗)>
(
In −R>HRK

)
Qy> (6.62)

= k∗ (x∗)>
(
K + β2In +

β2

η2
LK

)−1
y> (6.63)

we can note that: (
K + β2In +

β2

η2
LK

)−1
=
(
In −R>HRK

)
Q (6.64)

this will be useful later.

6.2.2 Variance of the posterior
With some mathematical steps and using the inversion formula (6.38), we can write:

σ∗M = β2 + k (x∗, x∗) (6.65)

− k∗ (x∗)>
[
In R>

] K + β2In KR>

RK RKR> + η2Im

−1  In
R

k∗ (x∗)

(6.66)

= β2 + k (x∗, x∗)− k∗
(
In −R>HRK

)
Qk>∗ + (6.67)

− k∗
[
In +R>HRKQK −QK

]
R>HRk>∗ (6.68)

then using Remark 6.4, we can write:

σ∗M = β2 + k (x∗, x∗)− k∗ (x∗)>
(
K + β2In +

β2

η2
LK

)−1
k∗ (x∗) + (6.69)
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− k∗ (x∗)>
[
In +R>HRKQK −QK

]
R>HRk>∗ (6.70)

6.3 Marginal likelihood computation
As shown in Section 1.5.3, it is possible to estimate the hyper-parameters ζ by maximizing
the marginal likelihood (ML). However, that method was usable only when the manifold
regularizer was not employed because the Bayesian framework described in Section 1.3 is
well de�ned only when the Tikhonov regularizer is the only one employed. In the last
section, this problem was resolved by introducing a a Bayesian framework that can be em-
ployed when µ > 0. For this reason, this section is dedicated to how to evaluate the ML in
order to estimate the hyperparameters.

In this case, the hyperparameters vector is:

ζ =
[
ψ ρ β2 η2

]
(6.71)

where ψ are the kernel hyperparameters and ρ are the hyperparameters needed for the
regressors graph selection.

From Equation (6.27), it is possible to write the marginal likelihood of the measurements
available by simply removing the y∗ because the distribution is Gaussian [17]. Therefore:

p (y, z |g, ζ ) = N

 y>
z>

 ∣∣∣∣∣∣
 0n×1

0m×1

 ,Σmlh (ζ)

 (6.72)

where the dependency on the hyperparameters is highlighted and

Σmlh (ζ) =

 K + β2In KR>

RK RKR> + η2Im

 (6.73)

Then, following the reasoning of Section 1.5.3, the hyperparameters are estimated by solv-
ing the optimization problem

ζ̂ = arg min
ζ

[ y z
]

(Σmlh (ζ))−1

 y>
z>

+ log det (Σmlh (ζ))

 (6.74)

Using the inversion formula (6.38) and remembering that z = 01×m (see Remark 6.3), it is
possible to write:

m1 =
[
y z

]
(Σmlh (ζ))−1

 y>
z>

 (6.75)

=
[
y 01×m

] Q −QKR>H

−HRKQ H +HRKQKR>H

 y>

0m×1

 (6.76)

= yQy> (6.77)
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in order to compute this term, we can note that, using Remark 6.4, we can write:

(
In −R>HRK

)
Qy> =

(
K + β2In +

β2

η2
LK

)−1
y> (6.78)

Qy> =
(
In −R>HRK

)−1(
K + β2In +

β2

η2
LK

)−1
y> (6.79)

therefore, we can computeQy> by solving two linear systems in succession:

c =

(
K + β2In +

β2

η2
LK

)−1
y> (6.80)

b =
(
In −R>HRK

)−1
c (6.81)

then:
m1 = yb (6.82)

Let us now consider the second term. From Equation (3.13) of [57], we have that:

m2 = log det

 K + β2In KR>

RK RKR> + η2Im

 (6.83)

= log det
(
K + β2In

)
+ log det

(
RKR> + η2Im −RK

(
K + β2In

)−1
KR>

)
(6.84)

In order to compute log det
(
K + β2In

)
it is possible to employ again the Cholesky de-

composition [52]
K + β2In = ΠΠ> (6.85)

where Π ∈ Rn×n is lower triangular. It follows that (see Equation (A.18) of [104]):

log det
(
K + β2In

)
= 2

n∑
i=1

logΠii (6.86)

where Πii is the i-th diagonal element of Π.

Summarizing, the marginal likelihood cost to be minimized is:

ζ̂ = arg min
ζ

{
yb+ 2

n∑
i=1

logΠii + log det (O)

}
(6.87)

where
O = RKR> + η2Im −RK

(
K + β2In

)−1
KR> (6.88)

Remark 6.5. This cost function is composed by three addends:

• the �rst term is a data �t penalty that depends on the measured;

• the second term is a complexity penalty depending only on the covariance function
and the inputs (analogous to the only Tikhonov regularization case);

• the third term is a penalty induced by the manifold regularization setting.
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The following example gives some intuition about the cost function (6.87). Consider the
Gaussian kernel

k (xi, xj) = e
−
(xi−xj)2

σk (6.89)

where xi, xj ∈ [−6, 6]. From this covariance function, we generate n = 55 observations
corrupted by zero mean Gaussian noise with variance β2 = 0.1. Default values for hyper-
parameters are σk = 1, β2 = 0.1, η2 = 0.1, σm = 1. To compute the regressors graph, we
use the rationale for connecting the regressors as described in Section 5.6, with orderm = 2
and without the spatial connection (there are not any additional unsupervised regressors).

Figure 6.2: marginal likelihood components as function of σk , η2 and σm.
(Green dashed) data �t penalty; (Red dot-dash) complexity penalty; (Gray
dotted) manifold-induced penalty; (Solid blue) negative marginal likelihood

cost. True values are represented by vertical black dashed lines.

Figure 6.2 depicts the three components of (6.87) as one single hyperparameter varies. The
�rst plot shows the ML terms as a function of the kernel variance σk. As σk increases,
the model becomes less complex: the complexity term and the manifold-inducted terms
decrease but the data �t term increases. Notice how the ML has its minimum near the true
value σk = 0.1.

The second plot shows the ML terms as a function of the variance of the manifold weights
σm. As σm increases, more importance is given to manifold regularization: the data �t
penalty increases and the manifold-induced term decreases up to a plateau point. The com-
plexity term is not in�uenced by σm since it depends only on the chosen kernel.

The third plot shows how the ML terms depend on the variance of noise on arti�cial gradient
observations. As η2 decreases, the gradient along the manifold graph is required to be
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lower: therefore, the function is smoother and the data �t penalty increases. As opposed to
previous cases, here we do not have local minima, and the minimizer tries to get η2 as low
as possible.

The last plot represents an inverse relationship of the cost terms as a function of the noise
variance β2. As β2 grows, the model gets more regularized, so its complexity decreases: due
to the inverse relationship (caused by the Q and

(
K + β2In

)−1 terms in (6.82) and (6.83)
respectively), we have the opposite, i.e. as β2 grows, the model complexity increases, and
other terms behaves accordingly. Notice how a trade-o� is reached near the true value
β2 = 1.

Figure 6.3 depicts contour plots of (6.87) as a function of two hyperparameters, where rea-
soning analogous to the previous ones apply.

Figure 6.3: Contour plots of the negative marginal likelihood as function
of σk vs. σm (left) and as function of σk vs. β2 (right). True values are
represented by vertical black dashed lines. Darker colors represent lower

ML values.

6.4 Experimental results
This section evaluates the proposed approach, i.e. the use of manifold regularization with
hyperparameters tuned by marginal likelihood optimization for non-linear dynamical sys-
tem identi�cation, by de�ning: (i) the kernels employed; (ii) the choices about graph topol-
ogy and weights; (iii) the compared methods.

6.4.1 Kernel employed for the simulations
Since we are dealing with non-linear system identi�cation, the regressors have the form
described in Section 2.3. In particular,the regressor xt is built as follows:

xt =
[
yt · · · yt−ny ut · · · ut−nu

]>
(6.90)

where ny and nu are the orders of the autoregressive and exogenous parts, respectively.
Then the kernel is composed of two components: one that de�nes the non-linear iteration
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between the past inputs and one for the iteration of the past inputs. In details, we have:

k (xa,xb) = λu

nu−pu+1∑
i=1

e−βuie
−
∑pu−1
j=0 (ua−i−j−ub−i−j)

2

σu + (6.91)

+ λy

ny−py+1∑
i=1

e−βyte
−
∑py−1

j=0 (ya−i−j−yb−i−j)
2

σy (6.92)

where the hyper-parameters are:

• 1 ≤ pu ≤ nu and 1 ≤ py ≤ ny de�ne the order of interaction between past inputs
and past outputs, respectively;

• λu ∈ R+ and λy ∈ R+ de�ne the strength of the two kernel components;

• βu ∈ R+ and βy ∈ R+ de�ne the rate of decay in time of the two kernel components;

Therefore, we have:

ψ =
[
λu λy βu βy σu σy

]
∈ R1×6 (6.93)

and he interaction orders py, pu can be estimated via a grid search as discussed in [97].
Hyperparameters ny, nu can be set to a suitable high number.

Remark 6.6. This kernel is a specialized version of the kernel, described in 2.3 with long
regressors and fading memory and initially proposed in [97] and explained in Section 2.3,
for systems where there is not any non-linear relation between the past input and output
samples.

6.4.2 Choice of the regressors graph topology and weights
As shown in Section 1.4, the manifold regularization term encodes the smoothness proper-
ties of the function g along the regressors manifold, approximated by the regressors graph.
There are two choices that must be made: (i) how to select the best graph structure (i.e. link
connections); (ii) how to de�ne the weights on the edges. When the graph characteristics
are not guided by the application, the connection structure of the graph is usually set to
“all connected” or “k-connected” (i.e. only k neighbors are connected to each node), usually
with Gaussian weights [9, 11, 76]. For other possible choices of weights, see [13, 14, 35, 54].
For more details, see Section 1.4.2.

Here, we employ the rationale of connecting regressors to their neighbors based on their
order of interactions, such that each node is connected to its p = max (py, pu) nearest
nodes in time (similar to what has been done in [43, 78, 79] and in Section 5.6), such that a
regressor xi is connected to regressors {xi−1, . . . ,xi−p} and {xi+1, . . . ,xi+p}.

This rationale has two advantages: (i) it is computationally much cheaper with respect to
connecting all the nodes; (ii) it re�ects the fact that data came from a dynamical system.
The �rst advantage is related to the row dimension of theR matrix: if there are more con-
nections, the incidence matrix becomes taller, and the marginal likelihood computations get
more expensive. Furthermore, by connecting only regressors closer in time, the smoothness
is enforced only for those regressors that are more correlated or that interact in a stronger
way. In the simulations, we considered Gaussian weights on the edges, such that

wi,j = e
−
‖xi−xj‖22

σm , (6.94)
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where σm ∈ R+ is an hyperparameter of the method.

6.4.3 Dynamical model example and methods comparison
We tested the proposed method on a NARX system taken from the literature [97]:

yi = 0.8yi−1 + ui−1 − 0.3u3i−1 + 0.25ui−1ui−2+

− 0.3ui−2 + 0.24u3i−2 − 0.2ui−2ui−3 − 0.4ui−3 + ei

ei ∼WGN
(
0, 0.142

) (6.95)

We performed M = 100 Monte Carlo runs, varying the noise realization on identi�cation
data, with zero initial condition. The train input is u ∼WGN

(
0, 12

)
, where WGN stands for

White Gaussian Noise. The number of regressors used for the identi�cation of the models
is n = 55. As already mentioned, manifold regularization can be especially useful in a small
data regime. In order to better assess the performance of the proposed additional manifold
regularization term, we �xed the orders ny, nu, py, pu to their true values.

We compare the following approaches:

(Appr. 1) Tikhonov regressionwith kernel in [97], hyperparameters estimated via ML opti-
mization;

ψ =
[
λ1 λ2 σ β2

]
n = 3 p = 2 (6.96)

(Appr. 2) Tikhonov regularization with the kernel (6.91), hyperparameters estimated via ML
optimization;

ψ =
[
λu λy βu βy σu σy

] ny = 3

nu = 1

py = 3

pu = 1
(6.97)

(Appr. 3) Tikhonov + manifold regularization with the kernel (6.91), hyperparameters es-
timated via GCV (see Section 1.5.2 or [44]);

ψ =
[
λu λy βu βy σu σy

] ny = 3

nu = 1

py = 3

pu = 1
(6.98)

(Appr. 4) Tikhonov + manifold regularization with the kernel (6.91), hyperparameters es-
timated via ML, i.e. the proposed approach;

ψ =
[
λu λy βu βy σu σy

] ny = 3

nu = 1

py = 3

pu = 1
(6.99)

We tested the performance of the methods on a separate test dataset

DT = {(u∗i , y∗i ) |1 ≤ i ≤ 1000} , (6.100)
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generated in the same way as the training one (i.e. with autoregressive noise). The perfor-
mance of the estimated model is measured via the Fit index:

Fit = 1−

√√√√∑1000
i=1 (ŷ∗i − y∗i )

2∑1000
i=1 (y∗i − y∗i )

2 (6.101)

ŷ∗i = ĝ (x∗i ) (6.102)

y∗i =

∑1000
t=1 y

∗
i

1000
(6.103)

where x∗i is the i-th test regressor, y∗i is the mean value of the test data output, and ĝ is the
estimate model.

Simulation results are reported in Figure 6.4. With only Tikhonov regularization, notice
that the specialized kernel in Equation (6.91) performs better than the general kernel in [97].
We, therefore, compare the use of manifold regularization to the only Tikhonov one, both
equipped with the specialized kernel. In this example, the use of manifold regularization
with GCV for hyperparameters estimation leads to better test performance, although with
higher variance. marginal likelihood optimization, as enabled by the Bayesian interpreta-
tion, gives hyperparameters estimates that are still able to provide better performance with
respect to using only Tikhonov regularization, while keeping under control the variance of
the model estimates and their test performance.

Figure 6.4: Simulation results. The number of regressors used for identi�-
cation is n = 55.
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6.5 Concluding remarks
In this chapter, it is presented a novel approach for nonlinear nonparametric system iden-
ti�cation, based on a Bayesian view of manifold regularization. The advantages of the new
rationale are twofold:

• it unveils a new interpretation of the manifold regularization based on the gradient
of the function along the manifold;

• it allows using the marginal likelihood optimization for tuning the hyperparameters
of the method.

Results have shown that the proposed approach can have better performance with respect
to both Tikhonov regularization and manifold regularization with hyperparameters tuned
by generalized cross-validation. Future research is devoted to the development of a Bayesian
interpretation for the semi-supervised case and new design strategies for the graph topol-
ogy.
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CHAPTER 7

Classification of light charged
particles

This chapter presents an application of kernel-based linear identi�cation of discrete linear
models.

In more details, this work describes a nonparametric learning approach for the automatic
classi�cation of particles produced by the collision of a heavy ion beam on a target, by
focusing on the identi�cation of isotopes Light Charged Particles (LCP). In particular, it
is shown that the measurement of the particle collision can be traced back to the impulse
response of a linear dynamical system and, by employing recent kernel-based approaches,
a nonparametric model is found that e�ectively trades o� bias and variance of the model
estimate. Then, the smoothened signals can be employed to classify the di�erent types of
particles. Experimental results show that the proposed method outperforms the state of the
art approaches. All the experiments are carried out with the large detector array CHIMERA
(Charge Heavy Ions Mass and Energy Resolving Array) in Catania, Italy.

The content of this Chapter is partially taken from the scienti�c publications [77] written
by this Thesis author and his Ph.D. tutors. The remainder of the Chapter is organized as
follow:

• Section 7.1 contains a brief introduction of the application and the methodologies
used to tackled it;

• Section 7.2 describes the experimental setup of the application;

• Section 7.3 presents the proposed approach employed for modeling the nuclear phe-
nomena;

• Section 7.4 is dedicated to the machine learning classi�ers used for the particles clas-
si�cation;

• Section 7.5 discusses the obtained results;

• Section 7.6 contains some concluding remarks and future developments.
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7.1 Introduction
One of the most interesting goals of the intermediate energy heavy ion research is to in-
vestigate the characteristics of the nuclei under extreme conditions of density and temper-
ature [1]. In these types of physics experiments, the standard approach is the measurement
and analysis of the collision e�ects of a heavy ion beam over a target. The nuclear reac-
tions induced by the nucleus-nucleus collision produce a large number of fragments with
di�erent energy, charge and mass values. This multifragmentation is predicted to be the
major decay mode produced for a nuclear system at high density and temperature [55].
Thus, a complete experimental investigation, that should identify almost all the produced
fragments, needs to ground on a suitable experimental device able to capture the particles
that move away from the collision point in all directions [74].

These devices present speci�c detector cells that generate an electrical signal when hit by
a particle. The availability of these detectors, however, does not automate the classi�cation
of the detected particles fragments. In fact, this task is often performed manually by visual
inspection of the measured electrical quantities [42]. An e�cient automatic algorithm is
therefore strongly advised.

One of the �rst attempts to develop a fully automated algorithm for isotopic classi�cation
of the most energetic Light Charged Particles (LCP) has been presented in [102]. Here,
the authors tackled the problem from a system identi�cation point of view, identifying the
dynamical system that generated the measurements.

In this chapter, we extend previous research by employing kernel methods for system iden-
ti�cation, following the advice given in [59] (based on the separation/invariance principle)
to always �rst model as well as possible. A model reduction step is then performed using a
numerical algorithm for N4SID (subspace state-space system identi�cation) method [62].

Kernel methods are nonparametric learning techniques that very recently undergone a large
interest from the system identi�cation community [78, 79, 95]. They are based on the de�-
nition of a kernel function k : X ×X → R, withX a generic set where the input regressors
belong, that embodies the properties of the functional space in which the desired func-
tion has to be searched. The main advantage is that they are shown to e�ectively trade o�
the bias/variance of the identi�cation procedure, outperforming classical Prediction Error
Method (PEM) equipped with model selection criteria such as Akaike Information Criterion
(AIC) [2, 95]. The separation principle perfectly applies to these approaches. First, given
data and prior information on the system behavior, �t a low-bias and minimum variance
model. Then, perform a further approximation via model reduction. The prior information
is used to design the kernel function employed.

In light of the previous sections, the innovative contributions of this work are three-fold:

• the author proposes the framework of Gaussian process (GP) [17, 104] to �rst �t a
low-bias model, followed by an N4SID model reduction step, in order to model the
nuclear measurements;

• the author employs for the �rst time (as far as the authors are aware) the stable-spline
kernel [95] within a real-world experimental setting;

• the author proposes a black-box classi�cation scheme that is tailored to the applica-
tion and that highlights interpretability of its predictions.
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7.2 Problem statement and experimental setup
The detector considered in this work is the large detector array CHIMERA (Charge Heavy
Ions Mass and Energy Resolving Array) [1], installed at Laboratori Nazionali del Sud (Cata-
nia, Italy), see Figure 7.1.

17 rings inside the 
vacuum chamber

18 forward rings

Beam exit

Target

Beam entrance

1m

Figure 7.1: A photography of the CHIMERA detector array (left image) and
a schematic representation (right image).

.

The CHIMERA detector is designed for the study of heavy-ion reactions at intermediate
energy (up to 100MeV/nucleon). The multifragmentation phenomenon (i.e. the focus of this
work) is produced by a beam of accelerated nuclei delivered by a superconducting cyclotron
over a thin target, placed inside a vacuum chamber. When an accelerated nucleus collides
over a target one, the hot and compressed system formed in the early stage of the collision
can de-excite, leading to the generation of many fragments with a di�erent charge, mass,
and energy.

The detector is constituted by a set of 1192 detection cells arranged in 35 rings with cylin-
drical geometry around the beam axis. The rings are divided into two blocks. The �rst
block is a set of 18 rings, composed of 688 detectors, arranged with cylindrical geometry.
The second block is a set of 17 rings, composed of 504 detectors, placed around the target
with a 0.4m radius spherical geometry inside the reaction vacuum chamber.

CHIMERA perceives the surrounding phenomena employing detection cells. Each detection
cell is a telescope composed of a CsI(Tl) scintillation crystal with a thin Si detector in front
of it. When hit by a particle, the CsI(Tl) element produces a light impulse. A photodiode
collects the emitted light producing a current output which is converted into a measurable
voltage signal v (t) via a charge ampli�er. Similarly, the output of the Si detector (produced
by a charge displacement when hit by a particle) is fed into a preampli�er and a signal u (t)
is generated. The measurement chain is depicted in Figure 7.2.

The signal v (t) is the most informative for the classi�cation of LCP [102, 116]. This clas-
si�cation is performed by means of the pulse shape analysis, i.e. based on the hypothesis
that particles with di�erent mass and charge generate current pulses with di�erent shape.
In order to discriminate the pulse shapes, the produced impulse measurements can be mod-
eled by an exponential law which decay rate depends on two time constants, a “fast” one τf ,
and a “slow” one τs [120]. The voltage signal v (t) is sampled at Ts = 10ns with a 14-bit
resolution. For each pulse, 2048 samples are measured.

A set of pulses produced by known particles (manually labeled with visual methods [102])
are collected in an experiment where a beam of 20N e at 21MeV per nucleon bombards
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Preamplifier

Preamplifier

Si
Cs(Tl) + 

photodiode
Particle
collision

A/D 
converter
and digital
acquisition

system

𝑠

𝑠

Figure 7.2: Measurement chain, representing analog signals (blue) and dig-
ital signals (red)

Isotope Atomic number
( Z )

Atomic mass
number (A )

Number of
employed pulses

1H (protons) 1 1 904

2H (deuterons) 1 2 980

3H (tritons) 1 3 992

3He 2 3 989

4He 2 4 991

6Li 3 6 989

7Li 3 7 897

7Be 4 7 510

9Be 4 9 524

Heavy ions ≥ 5 ≥ 10 979

Table 7.1: Dataset employed in this work

a 12C target. The dataset employed for this work consists of 8751 pulses, about 20µs long,
described in Table 7.1. A total of 10 di�erent particle types are considered. Particles with
the atomic number Z ≥ 5 and with the atomic mass numberA ≥ 10 are regarded as Heavy
Ions.

The next section describes the following aspect:

a) the observation motivating the modeling of the CsI(Tl) light impulse as the impulse
response of an LTI;

b) the preprocessing steps performed on the raw measured data;

c) the nonparametric smoothing procedure performed utilizing Gaussian process;

d) the subspace system identi�cation technique employed using the smoothened data.
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7.3 Modeling the impulse response

7.3.1 Working assumptions
Following the results in [102], we chose to model the signal v (t), measured from the CsI(Tl)
detector, as the impulse response of a Single-Input Single-Output (SISO) LTI system, with
transfer function V (s). Based on [102] and references therein, the following dynamic sys-
tem model is employed:

V (s) =
1

1 + sτm

(
µf

1 + sτf
+

µs

1 + sτs

)
, (7.1)

where τf and τs denotes the fast and slow time constant of the light impulse response,
respectively, the gains µf and µs are related to the energy of the particle, and τm models
the dynamic response of a unitary-gain sensor. Notice how, in this case, the time constant
of the sensor is higher than the phenomenon that it is measured. Furthermore, we suppose
that the data are a�ected by a stationary zero-mean additive noise

ṽ (ti) = v (ti) + e (ti) i = 1, . . . , 2048 (7.2)

where ti = i · Ts is the time instant of the i-th samples, ṽ (ti) is the noisy sample of the
impulse response taken at the time instant ti and e (ti) is the measurement noise. For com-
pactness sake, from now on, the i-th sample of the impulse response, the noisy signal and
the noise are indicated, respectively, with vi = v (ti), ṽi = ṽ (ti) and ei = e (ti). Then
equation (7.2) can be rewritten as

ṽi = vi + ei i = 1, . . . , 2048 (7.3)

7.3.2 Preprocessing steps
A set of preprocessing steps has been performed on raw data. These precautions are manda-
tory for the application of the subsequent modeling steps. An example of measured impulse
response is shown in Figure 7.3. It is possible to observe a “deadzone” prior to the impulse’s
starting. This is due to the post-triggering acquisition setup and acquisition chain’s o�-
sets. Thus, two actions are mandatory: (i) the baseline removal and (ii) the detection of the
impulse starting time.

The baseline removal process is made by �t a line on the �rst 4µs of the measurement, such
that gi = m · i + l, with m, l ∈ R the line’s coe�cients. The �tted line is then removed
from the measurements, obtaining the signal zi = ṽi − gi. The obtained signal is depicted
in Figure 7.4.

The detection of the starting time required special treatment since impulses have di�erent
amplitudes and shapes. The following procedure was devised by the authors:

1. The discrete time derivative of zi is computed

dzi =
zi − zi−1

Ts
. (7.4)

A �rst estimate, i.e. k1, of the initial condition is made when dzi exceeds a prede�ned
threshold;

2. A third order polynomial p (t) is �t on the 10 points after k1;
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Figure 7.3: Example of a measured vi response (blue). The baseline value
is highlighted with its �tted line (dotted red).
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Figure 7.4: Example of a computed signal zi after baseline removal.

3. The root r of p (t) that is nearest to k1 is computed. The nearest sampled point k2
successive to r is taken as the �rst non-null impulse sample;

4. The starting point i is taken as the time instant before k2, posing zi = 0. Samples
before i are deleted. We denote the �nal preprocessed signal as yi, with i = 1, . . . , n,
where n is the length of the particular measurement (since the baseline length is
di�erent for each acquisition, the cleaned data can have di�erent lengths).

The procedure is depicted in Figure 7.5 after that the baseline was removed. Each impulse
now lasts about 16µs. The last caution was to multiply the data for minus one, in order
to obtain an impulse response of a system with positive gain, as should be from physics
relations.
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Figure 7.5: The rationale for choosing the starting time.

7.3.3 Nonparametric system identification
Adhering to the rationale presented in the chapter introduction, we chose to use the frame-
work of Gaussian process (GP) to model the time-domain impulse responses, presented in
Section 2.2. In this way, a low-bias and �exible model is obtained. The estimated response
is the minimum variance estimate when error measurements and data are considered as
Gaussian random variables. Given that the data are interpreted as impulse responses, the
use of the stable-spline kernel is the most natural choice. This is a particular type of kernel
function that has been designed in order to model LTI systems [95, 96].

We employed the so called continuous-time second-order stable-spline kernel [95]:

k (a, b) = λ

(
e−β(a+b+max(a,b))

2
− e−3βmax(a,b)

6

)
, (7.5)

where a, b ∈ Ω ⊆ R+ are generic continuous-time instants, and λ, β ∈ R+ are hyperpa-
rameters that determine the shape of the kernel function (and therefore of the estimated
one). Since, in this scenario, the function that we want to estimate is an impulse response,
the domain of the kernel is the continuous-time. Thus, the regressors are the time instants of
the measurements. A more in-details explanation of this kernel can be found in Section 2.1
and in 4.3.

Consider now the vector y ∈ R1×n formed by stacking the impulse response samples yi.
As stated in (7.2), we can model the measurements as

y = g + e (7.6)

where g ∈ R1×n contains the noiseless data gi, i.e. the noiseless version of yi, and e ∈ R1×n

contains the noise terms ei. We will suppose now that the errors ei are IID with variance σ2.
The distribution of the observed values given the noiseless ones is (omitting the dependence
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on the input variables):
p (y |g ) = N

(
y>
∣∣∣g>, σ2In) , (7.7)

From the Gaussian process de�nition [17], the marginal distribution p (g) is Gaussian with
zero mean and variance de�ned by the kernel matrixK ∈ Rn×n:

p (g) = N
(
g> |0n×1,K

)
(7.8)

The matrix K (also known as Gram matrix) is a symmetric semide�nite positive matrix
whose (i, j) entry is k (ti, tj) Therefore, instead of placing a prior on the parameters, we
put a prior over the noiseless data g.

The marginal distribution of y can be found by marginalizing over g, using known proper-
ties of Gaussian distributions (see Equation (2.115) of [17], as:

p (y) =

∫
p (y |g ) p (g) dg (7.9)

= N
(
y|0n×1,K + σ2In

)
(7.10)

= N (y|0n×1,Z (ζ)) (7.11)

where
ζ =

[
λ β σ

]>
∈ R3×1 (7.12)

contains the hyperparameters of the method.

The prediction of the output sample taken at time t∗ ∈ R can be obtained as the expected
value of the predictive distribution p (y∗ |y, t∗ ). This distribution can be computed by ap-
plying standard formulas for conditioned Gaussian distributions (see Equations (2.81) −
(2.82) of [17]). Its expected value is:

y∗ = k (t∗)>Z (ζ)−1 y>, (7.13)

where
k (t∗) =

[
k (ti, t

∗) · · · k (ti, t
∗)
]>
∈ Rn×1 (7.14)

In this work, we only perform smoothing: the test data are equal to the train data.

For each impulse response, we performed a hyperparameters optimization procedure, by
maximizing the marginal likelihood [17] (see Section 1.5.3 for more details). This tech-
nique consists into maximizing the marginal likelihood of the data,that depends on ζ, given
by (7.9). An estimate of the values of the hyperparameters can be obtained as [17]:

ζ̂ = arg min
ζ∈R3×1

{
y>Z (ζ)−1 y + log det (Z (ζ))

}
(7.15)

To e�ciently compute (7.15), the Cholesky decomposition [52] of the matrix Z (ζ) is used
as explained in Section 1.5. The results of the applied procedure are shown in Figure 7.6,
where it can be observed how the method has e�ciently reduced the noise present in the
data.
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Figure 7.6: Example of a measured impulse response (blue) with superim-
posed Gaussian process prediction (green). The smoothing e�ect is clearly

visible.

7.3.4 Subspace system identification
We now turn our attention to the identi�cation of the system (7.1). Consider the state-space
representation of a discrete-time SISO LTI system:

xi+1 = Axi +Bui (7.16)
yi = Cxi +Dui, (7.17)

wherexi ∈ Rp×1, ui ∈ R and yi ∈ R are the system state (of dimension p), input and output,
respectively. We setD = 0 since we preprocessed the impulse data to start from zero. With
the data obtained by the �exible model devised in the previous section, a minimum-order
realization of (7.16) can be found by employing the N4SID procedure described in [62, 102].

The method brie�y consists into creating a Hankel matrix H composed by the noisy im-
pulse measurements. The Singular Value Decomposition (SVD) is then employed to suitably
reduce the rank of H to the chosen model order. With the reduced Hankel matrix, it is pos-
sible to obtain an estimate of the Observability and Reachability matrices of the system,
from which an estimate

{
Â, B̂, Ĉ

}
can be computed.

Instead of creating the matrixH with the noisy data, the idea is to use the smoothened ones,
and apply the N4SID procedure. This approach permits to avoid optimization procedures
that can get stuck in local minima, i.e. estimating the parameters of a prede�ned transfer
function. As further check, the inspection of the SVD singular values showed that the order
of the system is indeed three.

After that the matrices
{
Â, B̂, Ĉ

}
are available, an estimate of the unknown parameters

of (7.1), i.e. {µf , µs, τf , τs, τm} can be computed by converting the discrete system into a
continuous one. It should be noticed that this conversion can produce a couple of complex
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poles, that do not adhere with the modeling of (7.1). Those tests were discarded, resulting
in the dataset of Table 7.1. We leave to future research the case where N4SID results are
used as the initial condition for an optimization procedure.

The results of the N4SID procedure are perfectly in line with those obtained in [102]. Box-
plots of the estimates are shown in Figures 7.7, 7.8, 7.9 and 7.10.
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Figure 7.7: Fast time constant.
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Figure 7.8: Slow time constant.

7.4 Particles classification
A particle type is completely de�ned by its charge, given by its atomic number Z , and its
mass, given by its atomic mass number A. In the previous sections, we applied a system
identi�cation point of view to characterize each impulse response of LCP (Z ≤ 4,A ≤ 9).
Following the separation principle, we �rst �t a low-bias model with Gaussian process re-
gression. Then, a model reduction has been performed. Each measurement is now con-
densed in an estimate of the parameters {µf , µs, τf , τs, β}.
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Figure 7.10: Gain of the slow component.
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We can now represent each impulse response as a feature vector

φ =
[
µf µs τf τs β

]>
∈ R5×1 (7.18)

A feedforward neural network (NN) [17] is trained to predict, for each observation, its
atomic number Z and atomic mass number A. The choice of using a NN model relies on
the fact that it can e�ciently handle multi-dimensional outputs as in this case. In fact, it is
crucial to take into account label correlations during the classi�cation process [50].

The NN is composed of 2 hidden layers with 10 neurons each, and a �nal layer with 2
outputs. The hidden layers have a hyperbolic tangent activation function. The NN structure
has been chosen by cross-validation. The output layer has a linear activation function. The
labeled outputs consist in the couple

Q =
[
A Z

]>
∈ R2×1. (7.19)

The training data were standardized to zero mean on unitary variance. The same transfor-
mation, with mean and variance computed on the training set, is applied to the test data. The
training of the NN has been performed using the well documented Levenberg-Marquardt
minimization algorithm [56]. The NN predicts a vector

q =
[
q1 q2

]>
∈ R2×1 (7.20)

which is the real-valued prediction of A and Z . The predictions were then rounded to the
nearest integer value. The test set consisted of 100 samples from each type of particle.

The predictions of the NN model are then fed to a second classi�er. A decision tree [44] is
employed to predict the type of each particle. The inputs are the estimated values of A and
Z , while the output is an integer number that represents the class of each observation. The
complete classi�cation procedure is reported in Figure 7.11. We could have employed just
one classi�er, mapping the features vectors directly to the particle classes. However, the
proposed chain of classi�ers is not only tailored to the classi�cation of di�erent particles,
but it is also highly interpretable because they can be clustered according to the predicted
atomic number Z and atomic mass number A, as will be shown in the next section.

Particle class
{1,2,⋯ , 10}

Estimated
parameters

{𝜇𝑓, 𝜇𝑠, 𝜏𝑓, 𝜏𝑠, 𝛽}Nonparametric 
model

Impulse response
𝑦𝑖 𝑖=1

𝑛

ℝ𝑛 ℝ𝑛

Smooth data
ො𝑦𝑖 𝑖=1

𝑛 State-space
system

identification ℝ5

Neural network 
+ 

decision tree ℕ

Best statistical properties Model reduction Classification

Figure 7.11: Schematic of the classi�cation procedure.

7.5 Results and discussion
Several observations can be made from the results of Figures 7.7, 7.8, 7.9 and 7.10. The
mean value of the fast time constant τf and of the slow one τs decreases (tendentially)
with the atomic number Z . The standard deviation also decreases. The gains µf and µs
tend to increase with Z and A, apart for the heavy ions (HI) and the 4He particles. The
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hyperparameter β increases with Z . This is in line with the behavior of τf and τs. In fact,
lower time constants indicate a higher decay rate. This is the exact information that β
encodes. These estimates are in line with the literature [102].

The classi�cation results of the proposed approach are compared with the method proposed
in [102]. Here, the author directly performed the N4SID step on noisy impulse data ṽ (k)
(after data preprocessing). Notice how the task is quite challenging because the previous
results obtained very high classi�cation rates.

In this work, we reimplemented the method proposed in [102] to make the comparison. The
purpose is to test the e�ectiveness of the proposed two-step identi�cation procedure. The
classi�cation accuracies are reported in Figure 7.12 and Figure 7.13. The heatmaps represent
the percentage of corrected classi�cations, comparing the predicted particle types with the
known ones. Darker colors indicate a higher classi�cation accuracy. The proposed approach
obtained a classi�cation accuracy of 96%. The method in [102] correctly classi�ed the 93%
of the test particles. It is important to emphasize how a 3% improvement in classi�cation
accuracy is a signi�cant contribution to this problem since this is important to determine
the properties of investigated physical phenomena. Figure 7.14 plots a subset of the test
samples along with the classi�cation bounds discovered by the decision tree. Notice how
the learned bounds are very intuitive and could be set by human visual inspection.
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Figure 7.12: Classi�cation results of the method in [102].

7.6 Conclusions
In this chapter, the use of the Gaussian process framework to identify a low-bias dynamic
model is investigated. The �exibility of GP allows capturing the dynamics that are required
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Figure 7.13: Classi�cation results of the proposed method.

for a speci�c application. If a low-order model is needed, a model reduction technique can be
employed as a subsequent step. This rationale has been applied to the classi�cation of Light
Charged Particles. First, a nonparametric model has been identi�ed, employing a speci�c
kernel function developed for linear system identi�cation. Then, the model reduction step
is performed via a subspace identi�cation method.

The parameters of the identi�ed system are fed to a combination of classi�ers to predict
the particle type. The classi�cation procedure is a black-box model that is, however, highly
interpretable. Results showed how the combination of nonparametric and parametric mod-
eling improved the classi�cation accuracy of the previous method, that did not leverage the
nonparametric modeling step. Further research is devoted to a better investigation of the
sensor’s model, comparison with other model reduction techniques and the design of an
ad-hoc kernel [30].
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Figure 7.14: A subset of test samples with the classi�cation bounds learned
by the decision tree.
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Conclusion

This Thesis proposed four di�erent theoretical contributions to the kernel-based system
identi�cation research �eld.

Firstly, in Chapter 3, it is shown that, thanks to the limited computational precision, there
exists an in�nite amount of equivalent solutions of the kernel-based regression problem.
This newfound freedom is then exploited to compute the solution that minimizes the com-
putational complexity of the estimated model. Furthermore, it is proposed a new approach
that can be used to attenuate the intrinsic ill-conditioning of the semi-supervised manifold
regularization. Therefore, this new point of view to the solution of kernel-based regression
spawns promising approaches that should encourage new researches on the topic.

As a second contribution, in Chapter 4, a novel black-box non-parametric continuous-time
LTI identi�cation technique that employs the RKHS properties is presented. This method-
ology, based on the work of [95], identi�es directly the transfer function of the system and it
can work with non-regularly sampled data-points. This method has shown very good per-
formance even when employed with low-exciting input signals with respect to the method
proposed in the literature [45, 46].

The third contribution introduces the concept of semi-supervised manifold regularization
in case of nonlinear dynamical systems as shown in Chapter 5. Here, a combination of an
algorithm that generates new unsupervised points and a criterion for the selection of the
underlying regressors graph topology is proposed as new contributions. Results showed
that this regularization technique may outperform the classical Tikhonov regularization
for the identi�cation of nonlinear dynamical systems.

Lastly, in Chapter 6, a Bayesian perspective of the manifold regularization is presented as
the fourth contribution. In particular, it is shown that a new likelihood term can be coupled
with the standard one and with a Gaussian process prior in order to obtain the desired e�ect.
Then, thanks to this new perspective, the method hyper-parameters can be tuned using
the marginal likelihood maximization approach. Monte Carlo simulations were performed
on a benchmark dynamical system. From the results, it is clear that the proposed tuning
procedure may increase the performance in some cases.

Finally, Chapter 7 presents an application of kernel-based learning techniques on a practical
application with real data in the �eld of nuclear physics. In particular, the nuclear reaction
induced by the nucleus-nucleus collision produces a certain quantity of energy that decays
over time. The aim was the classi�cation of the type of particles using the measured energy
produced after a collision. These time-series were modeled as an impulse response of an LTI
system. Then, a kernel-based approach was employed to identify the dynamical features of
this system and a decision tree is used to classify the particles using the identi�ed features
of the LTI system. This approach has shown nearly perfect classi�cation performance.
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