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Abstract— This paper deals with nonparametric nonlinear
system identification via Gaussian process regression. We show
that, when the system has a particular structure, the kernel
recently proposed in [1] for nonlinear system identification can
be enhanced to improve the overall modeling performance.
More specifically, we modify the definition of the kernel
by allowing different orders for the exogenous and the
autoregressive parts of the model. We also show that all
the hyperparameters can be estimated by means of marginal
likelihood optimization. Numerical results on two benchmark
simulation examples illustrate the effectiveness of the proposed
approach.

I. INTRODUCTION

The introduction of nonparametric kernel-based methods
for linear system identification provided a paradigm-shift in
the field [2] and in several practical applications, see, e.g.,
[3]. Instead of adopting a-priori parameterized models to
search for the best solution within a finite-dimensional space,
Reproducing Kernel Hilbert Spaces (RKHSs) [4] can be
addressed, thus allowing to reconstruct the full infinite-length
impulse response. Such spaces are defined by, and, in turn,
define, a proper kernel function. Exploiting the connection
of RKHS with the framework of Gaussian Processes (GPs)
[5], the unknown kernel hyperparameters can be estimated by
empirical Bayes (marginal likelihood) or SURE procedures
[6]. This is the counterpart of model order selection for
standard parametric methods, but, in most cases, it turns out
to be more effective in trading bias and variance of the model
due to its continuous nature [7]. This is especially important
when few data are available [8], since many properties of
the parametric Prediction Error Approach (PEM) method are
only asymptotic [9] (i.e., they hold only when the number
of data tends to infinity).

Kernel-based methods can be effectively employed also
for nonlinear system identification [1], [10], [11], [12], [13]
when little prior information is available on the model
structure. In [1], the authors proposed a kernel-based method
where the unknown system is considered as a realization of a
zero-mean Gaussian random field f . The minimum variance
estimator of f is available in closed form and belongs to a
RKHS defined by a proper kernel (covariance) function. The
kernel devised in [1] is given by a weighted sum of Gaussian
kernels, where each weight encodes the “fading memory”
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property of dynamical systems. A specific hyperparameter
tunes the degree of interaction between past inputs and
outputs that, however, is constrained to be the same for both
the exogenous and autoregressive parts.

In this work, we propose an adaptation of the kernel
function introduced in [1] for a specific class of nonlinear
systems in which input and output regressors affect the
system dynamics separately. Such systems include, e.g.,
control-affine systems like yt+1 = a(yt) + but, where
yt, ut denote the output and input at time t, a is a generic
function of the output [14] and b is a real constant. Notice
that control-affine systems like the one above are widely
employed, especially in robotic motion control, see [15] and
reference therein.

The proposed kernel allows for different degrees of
interactions, between previous inputs and outputs, to be
included in the model. If the model is composed only by the
exogenous (or the autoregressive) part, the proposed kernel
restores to the one in [1]. The best interaction degrees are
estimated from data, not requiring the user to select any
critical variable such as regressors, or model, orders.

The remainder of the paper is organized as follows.
Section II formulates the nonlinear system identification
problem. Section III presents the proposed enhanced kernel
for the identification of the considered class of systems. In
Section IV, the algorithm for obtaining a Bayesian estimate
of the dynamics is briefly reviewed. Section V characterizes
the space of functions induced by the enhanced kernel.
Section VI compares the performance of the proposed kernel
with the benchmark. Lastly, Section VII is devoted to
concluding remarks and future developments.

II. PROBLEM STATEMENT

Suppose to have at disposal a set {yt} of noisy output
measurements from a nonlinear dynamical system fed with
an input {ut}, with t ∈ Z. The set of past inputs and outputs
at time t is defined as

yt ≡ [yt−1 yt−2 . . .]
>
, ut ≡ [ut−1 ut−2 . . .]

>
.

Let N be the number of measured data. The vector of
measured outputs is defined as:

y+ ≡ [y1 y2 . . . yN ]
>
,

while the vector of past outputs at time t = 1 is defined
as y− ≡ y1 = [y0 y−1 . . .]

>. Be N the set of natural
numbers without 0. Given two time instants t and τ ∈ Z, we
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define, for i ∈ N , the variables xi, zi ∈ R2 to be

x1 ≡ [yt−1 ut−1], z1 ≡ [yτ−1 uτ−1] (1)
x2 ≡ [yt−2 ut−2], z2 ≡ [yτ−2 uτ−2]

...
...

with x ∈ R∞×2 and z ∈ R∞×2 sequences given by

x ≡

x1x2
...

 , z ≡

z1z2
...

 . (2)

We assume that the one-step ahead predictor

ŷt|t−1 = F (yt, ut) (3)

is time invariant and strictly causal, i.e. does not depend on
ut. Then, it is possible to describe the unknown nonlinear
dynamical systems with the model

yt = F (yt, ut) + et, t = 1, . . . , N (4)

where {et} is a white-noise sequence that represents
the one-step ahead prediction error et ≡ yt − ŷt|t−1,
et ⊥ es, t 6= s, et ⊥ us ∀t, s. Furthermore, we assume that
et is Gaussian with zero mean and unknown, but constant,
variance, i.e. et ∼ N

(
0, η2

)
.

The aim now is to estimate F : R∞×2 → R in (4).
In order to do so, F is interpreted as a realization of
a zero-mean Gaussian random field f 1. In virtue of the
Gaussianity assumption, defining f requires only to specify
the covariance between the random variables f(x) and f(z),
where x, z are any couple of possible arguments for F . In
our setting, the input locations (regressors), defined in (2),
consist of past inputs and outputs (yt, ut). The training set
is {(yt, ut) , yt} for t = 1, . . . , N .

Let the covariance of f be E [f(x)f(z)] (remember that f
has zero mean), where E is the expectation operator. Then,
the covariance function can be equivalently defined by the
kernel function

G : R∞×2 × R∞×2 → R. (5)

The identification of F in (4) is pursed in a Gaussian
processes framework [5], where (5) defines a prior over
the space of possible functions to be learned. Once the
hyperparameters of (5) have been estimated by marginal
likelihood optimization [5], [16], the nonlinear model is
obtained as the minimum variance estimate of the Gaussian
process model. The estimate can also be interpreted as the
solution of a Tikhonov-type variational problem, defined on
the RKHS induced by (5), see [17] for a connection between
Gaussian processes and RKHS.

This work focuses on the identification of systems in the
following form:

S : yt = a
(
yt
)

+ b
(
ut
)
, (6)

where a, b are nonlinear functions of only past outputs and

1A one-dimensional Gaussian random field is a Gaussian process.

inputs, respectively. If a or b are zero, we have the NFIR
(Nonlinear Finite Impulse Response) and NAR (Nonlinear
AutoRegressive) case.

In the following sections, we will first review the kernel
function, of the type of (5), introduced in [1]. Then, we
propose an adaptation of this previously defined kernel that is
able to better handle specific system identification problems.

III. KERNELS FOR NONLINEAR SYSTEM IDENTIFICATION

A. The mixture of Gaussian kernel

The kernel proposed in [1] consists in a weighted sum,
for t = 1, . . . ,∞, of Gaussian kernels of the form

Kt(x, z; p, ψ) = E [ft(x)ft(z)]

≡ exp

−
∑p
j=1

∥∥∥x(:)t+j−1 − z(:)t+j−1∥∥∥2
σ2


p ∈ N, σ ∈ R+, (7)

where ft are zero-mean independent Gaussian random fields,
Kt is the covariance of ft and x, z ∈ R∞×2 are generic
kernel arguments as defined in (2). The symbol (:) indicates
that all the elements of the vectors xt+j−1, zt+j−1 are taken

into consideration, i.e.
∥∥∥x(:)1

∥∥∥2 =
∥∥∥ [yt−1 ut−1]

∥∥∥2, where
‖ · ‖2 is the Euclidean norm. The Mixture of Gaussian kernel
is therefore defined as [1]:

K(x, z; p, ψ) ≡
∞∑
t=1

βt ·Kt(x, z; p, ψ) p ∈ N (8a)

βt ≡ λ1e−t·λ2 , λ1, λ2 ∈ R+. (8b)

The function in (8) depends on the hyperparameters
ψ = [λ1, λ2, σ] and p. We have that:
• σ is the standard deviation of the Gaussian kernel, i.e.

the kernel width;
• λ1 and λ2 define βt, that weights the influence of past

data on the output yt. As we go back in time, it is
assumed that past data have less and less influence on
the current outcome;

• p accounts for the order of interaction between past
input and past output data. Notice how, in the definition
(7), both inputs and outputs have the same degree of
interaction.

The Gaussian random field f is therefore modeled as
f =

∑∞
t=1 ft. As an example, consider p = 2. Then, the

kernel in (8) reads as:

K(x, z; 2, ψ)

= β1 · exp

−
∥∥∥x(:)1 − z

(:)
1

∥∥∥2 +
∥∥∥x(:)2 − z

(:)
2

∥∥∥2
σ2


+ β2 · exp

−
∥∥∥x(:)2 − z

(:)
2

∥∥∥2 +
∥∥∥x(:)3 − z

(:)
3

∥∥∥2
σ2

+ . . .
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In this case we have that f , with covariance K(x, z; 2, ψ),
admits the representation

f(yt, ut) = f1(yt−1,ut−1, yt−2, ut−2) (9)
+ f2(yt−2, ut−2, yt−3, ut−3) + . . . ,

that is, a system were nonlinear interactions between inputs
and outputs are present on variables at different times.

Again, notice how in (9) the past inputs and outputs are
constrained to be included with the same degree, i.e. it is not
possible to have, as an example, a random field of the form
f1(yt−1, ut−1, yt−2).

B. Enhanced kernel for the considered class of systems

As showed in (9), the kernel (8) strives for interactions
between u and y. Consequently, if the considered class of
systems is that of (6), a more tailored kernel can be employed
that does not consider those interactions and allows different
order of past inputs and outputs to be included in the model.
In this view, we propose the following covariance function
S, that we call enhanced kernel:

S
(
x, z; py, pu, ψ

)
≡
∞∑
t=1

βyt ·K
y
t

(
x, z; py, ψ

)
(10)

+

∞∑
t=1

βut ·Ku
t

(
x, z; pu, ψ

)
,

βyt ≡ λ
y
1e
−t·λy2 , βut ≡ λu1e−t·λ

u
2 ,

λy1, λ
u
1 , λ

y
2, λ

u
2 ∈ R+, py, pu ∈ N,

where py, pu define the order of interaction between past
inputs and past outputs, respectively, and λy1, λ

u
1 , λ

y
2, λ

u
2

have the same role as in (8b). The Ky
t

(
x, z; py, ψ

)
and

Ku
t

(
x, z; pu, ψ

)
are kernels defined as

Ky
t

(
x, z; py, ψ

)
≡ exp

−
∑py

j=1

∥∥∥x(1)t+j−1 − z(1)t+j−1

∥∥∥2
(σy)

2

 ,

(11a)

Ku
t

(
x, z; pu, ψ

)
≡ exp

−
∑pu

j=1

∥∥∥x(2)t+j−1 − z(2)t+j−1

∥∥∥2
(σu)

2

 ,

(11b)

where the apexes (1) and (2) indicate that only the first and
second elements of the vectors xt+j−1, zt+j−1 are used, i.e.
only the y’s or the u’s enter in the kernel functions Ky

t and
Ku
t , respectively. The hyperparameters, except py and pu,

are contained in the vector ψ = [λy1, λ
u
1 , λ

y
2, λ

u
2 , σ

y, σu].
The kernel function in (10) permits to treat in an

independent way the contributions of the exogenous and the
autoregressive part of the model. Furthermore, for models of
type (6), it allows for different order of interaction between
past inputs and outputs, via the hyperparameters pu and py .
The Gaussian random field f is therefore modeled as

f =
∑∞
t=1 f

y
t +

∑∞
t=1 f

u
t ,

where Ky
t ,K

u
t are the covariances of the zero-mean

independent Gaussian random fields fyt , f
u
t , respectively. As

an example, considering the kernel S
(
x, z; 2, 3, ψ

)
, we can

impose the following representation for f :

f(yt, ut) = fy1 (yt−1, yt−2) + fy2 (yt−2, yt−3) + . . . (12)
+ fu1 (ut−1, ut−2, ut−3) + fu2 (ut−2, ut−3, ut−4) + . . .

It is interesting to notice that, when is known that there
is dependence only on previous inputs or only on previous
outputs, the kernel in (10) is analogous to that in (8).

IV. BAYESIAN NONPARAMETRIC ALGORITHM FOR
NONLINEAR SYSTEM IDENTIFICATION

In this section, we briefly review the Bayesian
nonparametric identification scheme outlined in [1]. This
rationale will be applied also to the proposed enhanced
kernel. Let θ denote the vector containing the standard
deviation of the noise and the kernel hyperparameters, i.e.
θ = [η, ψ] when the covariance of f is K in (8), while
θ = [η, ψ] when the kernel S in (10) is used. The vector
θ is considered a random variable, independent from p,
with poorly informative prior such that non-negativity of
its components is ensured. The parameter p is modeled as
a random variable as well: its distribution assigns equal
probability to each of the (arbitrarily large) discrete values
of p. Since, in practice, the values of y− are not completely
known, the unknown components are set to zero (as done
when initializing linear parametric predictors, see Section
3.2 of [9]). In view of this, the density p (f, θ, p|y−, u) is
approximated as p (f, θ, p|u). The joint density of y+, f, θ
and p is therefore approximated as (we omit the dependence
of each density on the input u):

p
(
y+, f, θ, p|y−

)
≈ p

(
y+|f, θ, p, y−

)
p (f |θ, p)p (θ, p) .

(13)
By relying on approximation (13) and assuming (8) as
covariance of f , it holds that the minimum variance estimate
of f , for known y+, y−, θ, p, u is [1]

f̂(x) = E
[
f(x)|y+, y−, θ, p, u

]
=

N∑
t=1

ctK
(
x,
(
yt, ut

)
; p
)
, (14)

where x is a generic input location, ct is the t-th component
of the vector

c =
(
Σy (p, θ)

)−1
y+, (15)

and Σy ∈ RN×N is an invertible matrix with (i, j)-entry
given by

[Σy]i,j = K
( (
yi, ui

)
,
(
yj , uj

)
; p
)

+ η2δij , (16)

where δij is the Kronecker delta. Furthermore, we have that:

p(y+|y−, θ, p, u) =
exp

(
− 1

2 (y+)
> (

Σy (p, θ)
)−1

y+
)

√
det
(
2πΣy (p, θ)

) ,

(17)
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that is, the marginal likelihood of observed data y+,
conditioned on past outputs, the system input and
hyperparameters, is Gaussian.

To provide an estimate for θ and p, the following rationale
is adopted [1]. Define:

θp = arg min
θ

Jp(θ), (18)

where
Jp(θ) ≡ −logp

(
y+|y−, θ, p, u

)
. (19)

Minimizing (19) we obtain an estimate θ̂p for each discrete
value in the set {1, . . . , p}. Then, the best p is obtained as:

p̂ = arg min
p

Jp

(
θ̂p

)
. (20)

The estimator of the hyperparameters vector θ is therefore θ̂p̂.
The prediction at a generic input location x is thus computed
by using (14) with θ̂p̂ and p̂.
Remark. The derivations in (14) - (17) are still valid if
the kernel S is employed in place of K. The choice of
the best interaction values is performed as in (18)-(20),
for all values in the set given by the Cartesian product
{1, . . . , py} × {1, . . . , pu}.

V. CHARACTERIZATION OF THE RKHS GENERATED BY
THE ENHANCED KERNEL

The minimum variance estimate in (14) admits a
deterministic counterpart that exploits the representer
theorem. The estimate is given by the solution of the
following variational problem [17] (assuming that the
enhanced kernel S is employed):

f̂ = arg min
s∈HS

N∑
i=1

(
yi − s

(
yi, ui

) )2
+ η2‖s‖2HS (21)

where HS is the RKHS induced by S in (10), and s ∈ HS is
an unknown function to be learned. Therefore, the properties
of the function f̂ are defined by those of the space of
functions HS . In particular, HS is the space of functions
given by the completion, w.r.t. the inner product〈∑

i

miS(·, xi),
∑
j

njS(·, xj)

〉
HS

=
∑
i,j

minjS(xi, zj),

(22)
of the linear span

∑l
i=1miS(·, xi), for all choices of l, {mi}

and {xi}.

A. Characterization of the RKHS HK
To start with, we briefly review the characterization of

the RKHS HK associated with the kernel K in (8). Define
x ≡ [x1, . . . , xn]

> ∈ Rn, z ≡ [z1, . . . , zn]
> ∈ Rn. The

kernel K(x, z) is assumed to be composed of n mixtures.
Then, omitting the dependence on ψ, for p = {1, . . . , n}:

K(x, z; n, p)

=

n−p+1∑
j=1

βjexp

(
−
∑p
i=1 (xi+j−1 − zi+j−1)

2

σ2

)
. (23)

Define also (j) = (j, . . . , j + p− 1) and the j-th component
kernel as

Kj(x, z ;n, p) = e−‖x(j)−z(j)‖2/σ2

, (24)

so that

K(x, z; n, p) =

n−p+1∑
j=1

βjKj(x, z ;n, p). (25)

The characterization of the RKHS HK is then given by
the following theorem [1]:

Theorem 1: Let X ⊂ Rn any set with non-empty interior,
x, z ∈ X , K : X × X → R. Then, HK is the direct
orthogonal sum of the spaces HKj induced by the kernels
Kj :

HK = ⊕n+p−1j=1 HKj . (26)
In Theorem 1, we have that HKj = ⊗pi=1HKji is given

by the tensor product of the spaces associated with the
single univariate kernels Kji = e−(xi+j−1−zi+j−1)

2/σ2

that
compose Kj through Kj = βj

∏p
i=1Kji. It follows from [4]

that each r ∈ HK can be expressed as r =
∑n−p+1
j=1 rj with

rj ∈ HKj , with the norm (see [1] for the exact definition of
this norm):

‖r‖2HK =

n−p+1∑
j=1

‖rj‖2HKj <∞. (27)

The general case where x, z are defined as in (1)-(2) leads to
completely analogous conclusion, with HKj = ⊗2p

i=1HKji ,
since now both u and y contribute to the multivariate
Gaussian kernel Kj .

B. Characterization of the RKHS HS
As previously done, we assume that the kernel S(x, z) is

composed by only n mixtures, with x, z ∈ Rn×2 defined
as in (1)-(2) but truncated at length n. Analogously to (24),
define

Ky
j (x, z ;n, py) = e

−
∥∥∥x(1)

(j)
−z(1)

(j)

∥∥∥2
/(σy)2

, (28a)

Ku
j (x, z ;n, pu) = e

−
∥∥∥x(2)

(j)
−z(2)

(j)

∥∥∥2
/(σu)2

, (28b)

where Ky
j ,K

u
j induce the RKHS spaces HyKj ,H

u
Kj

, which
functions depend on past outputs and inputs, respectively.
The kernel in (10) can be rewritten in a way similar to (25):

S(x, z; n, py, pu) =

n−py+1∑
j=1

βyjK
y
j (x, z; n, py) (29a)

+

n−pu+1∑
j=1

βujK
u
j (x, z; n, pu). (29b)

It is immediate to notice that the HKy
j
,HKu

j

are completely analogous to the HKj , i.e.
HKy

j
= ⊗p

y

i=1HKy
ji

and HKu
j

= ⊗p
u

i=1HKu
ji

, with
HKy

ji
,HKu

ji
the RKHS defined by the single

univariate kernels Ky
ji = e

−
(
x
(1)
i+j−1−z

(1)
i+j−1

)2
/(σy)2
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and Ku
ji = e

−
(
x
(2)
i+j−1−z

(2)
i+j−1

)2
/(σu)2 , respectively. From

Theorem 1, it follows that

HKy = ⊕n+p
y−1

j=1 HKy
j
, (30a)

HKu = ⊕n+p
u−1

j=1 HKu
j
, (30b)

where HKy ,HKu are the RKHS induced by the components
(29a) and (29b) respectively.

Since the kernels Ky
j ,K

u
j depend on different and

non-overlapping domains, we have that HKy ∩ HKu = ∅.
Therefore, the space generated by the kernel S in (10) is:

HS = HKy ⊕HKu (31)

Each s ∈ HS can be expressed as s =
∑n−py+1
j=1 syj +∑n−pu+1

j=1 suj with syj ∈ HKy
j
, suj ∈ HKu

j
, with the norm:

‖s‖2HS =

n−py+1∑
j=1

‖syj‖
2
HKy

j

+

n−pu+1∑
j=1

‖suj ‖2HKu
j

, (32)

= ‖sy‖2HKy + ‖su‖2HKu <∞, (33)

with ‖sy‖2HKy , ‖s
u‖2HKu defined as in (27).

In order to clarify the difference between the spaces HK
in (26) and HS in (31), consider the following example.
Suppose that py = pu = p, and x, z defined as in (28). It
follows that (29) can be written as

S(x, z; n, p) =

n−p+1∑
j=1

βyjK
y
j (x, z; n, p) + βujK

u
j (x, z; n, p).

(34)

Assume now that n = py = pu = 2, from (25) and (29).
Then, j = 1 and, respectively:

K(x, z; 2, 2) = β1e
− (yt−1−yτ−1)

2+(yt−2−yτ−2)
2

σ2 (35)

·β1e−
(ut−1−uτ−1)

2+(ut−2−uτ−2)
2

σ2

S(x, z; 2, 2, 2) = βy1e
− (yt−1−yτ−1)

2+(yt−2−yτ−2)
2

(σy)2 (36)

+βu1 e
− (ut−1−uτ−1)

2+(ut−2−uτ−2)
2

(σu)2

so that, for the case (35) we have that

HK1
= HKy

11
⊗HKy

12
⊗HKu

11
⊗HKu

12
, (37)

while for the case (36) it holds

HS1
=
(
HKy

11
⊗HKy

12

)
⊕
(
HKu

11
⊗HKu

12

)
, (38)

where HKj is the RKHS generated by the kernel Kj in
(24), HKy

ji
,HKu

ji
are, as previously defined, the RKHS

induced by the single univariate Gaussian kernels on y and u,
respectively, and HSj is the RKHS associated with the j-th
component of (34). Again, notice that if only the exogenous
or autoregressive part is present, the space (38) is identical
to (37), so that the kernel S reduces to kernel K.

In cases where py = pu = p = 2, n > p, the complete

space generated by the kernels K and S can be written as

HK = ⊕n−p+1
j=1 HKj , (39)

HS = ⊕n−p+1
j=1 HSj , (40)

where the difference between (39) and (40) is only in
the definition of the spaces that are generated by the j-th
component of the mixture, see (35) and (36).

VI. NUMERICAL EXPERIMENTS

The enhanced kernel introduced in (10) is compared to
the more general kernel (8) on the two benchmarks systems
(M1) and (M2) taken from [1] and reported below, such that
both an exogenous and an autoregressive parts are present.

yt =0.5yt−1 − 0.05y2t−2 + u2t−1 + 0.8ut−2 + et (M1)

et ∼WGN
(
0, 0.222

)
yt =0.8yt−1 + ut−1 − 0.3u3t−1 + 0.25ut−1ut−2 (M2)

−0.3ut−2 + 0.24u3t−2 − 0.2ut−2ut−3 − 0.4ut−3 + et

et ∼WGN
(
0, 0.142

)
For each system, we perform M = 100 Monte Carlo runs.

The initial condition is null for each system. The used input
is u ∼WGN

(
0, 12

)
, where WGN stands for White Gaussian

Noise. We compared the identification performances of the
two kernels with N = 50, 200, 400. training data. For
practical reason, we set the number of mixtures in (8)-(10)
to n = 20. The interaction orders p, py, pu assume values in
the set {1, 2, 3, 4, 5}. The best hyperparameters vector θ and
p are then determined from data using marginal likelihood
optimization. All hyperparameters were initialized with the
value of 1, and a constrained optimization interior-point
method was used. The constraints guarantee the positivity of
hyperparameters. We tested the performance of the methods
on a separate test dataset {utestt , ytestt }10000t=1 generated in the
same way as the training one. The performance of the j-th
simulation, j = 1, . . . ,M, is measured via the RMSE (Root
Mean Square Error):

RMSEj =

√∑10000
t=1

(
ŷtestt − ytestt

)2
10000

, (41a)

ŷtestt = f̂j
(
yt,test, ut,test

)
, (41b)

where (yt,test, ut,test) is the test set up to time t−1, and f̂j
is the estimate obtained in the j-th run. We choose to use
RMSE in order to compare with the results in [1].

The results in Fig. 1 - 3 compare the boxplots of
RMSEj for the kernels in (8)-(10), respectively, with
different numbers of training data. The horizontal dashed
line represents the standard deviation of the noise et, i.e.
the best possible expected prediction error for the specific
system considered.

As it is possible to appreciate, the proposed kernel is
able to better exploit the structure of the specific class
of models (6). The results improved for both types of
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Fig. 1: Identification results with N = 50 data for M1 (left)
and M2 (right).
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Fig. 2: Identification results with N = 200 data for M1 (left)
and M2 (right).
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Fig. 3: Identification results with N = 400 data for M1 (left)
and M2 (right).

benchmark models M1 and M2, for a small amount of data
(N = 50, Fig. 1) as well as when more data are available
(N = 200, N = 400, Fig. 2-3). In particular, focusing
on Fig. 2-3, for the system 2), the proposed approach is
able to better employ the additional data: in fact, for the
approach of [1], the availability of N = 400 data instead
of N = 200 observations does not change considerably
the identification performance; instead, the proposed kernel
attains notable improvements. These performance can be
explained by considering that the proposed kernel (10) is
taylored to the class of systems in (6), since it is designed

to represent functions that are nonlinear in past input and
past outputs in a disjoint manner. Furthermore, the enhanced
kernel overcomes the limitation of fixed order of interaction
p in (8), allowing for different orders of interaction py, pu

for the autoregressive and exogenous parts, respectively.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a modification of the state
of the art kernel for nonparametric identification of a
specific class of nonlinear systems. Such systems are
separately nonlinear in inputs and outputs, such that these
two components are additive. In the modified strategy,
we allow for different degrees of interaction between
previous inputs and outputs. Moreover, we characterize the
Reproducing Kernel Hilbert Space of functions generated
by the enhanced kernel. Simulation results on two different
benchmark systems with different sizes of training data
have shown how the proposed approach better exploits the
structure of the underlying model. Future work will be
devoted to the analysis of computational aspects and optimal
hyperparameter tuning.
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