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Abstract: In this paper, a model-free framework is proposed in order to equip electro-
mechanical actuators, deployed in aerospace applications, with health-monitoring capabilities.
A large experimental activity has been carried out to perform acquisitions with both healthy
and faulty components, taking into consideration the standard regulations for environmental
testing of avionics hardware. The injected faults followed a Fault Tree Analysis and Failure
Mode and Effect Analysis. Features, belonging to different domains, have been extracted from
the measured signals. These indexes are based largely on the motor driving currents, in order
to avoid the installation of new sensors. Finally, a Gradient Tree Boosting algorithm has been
chosen to detect the system status: the choice has been dictated by a comparison with other
known classification algorithms. Furthermore, the most promising features for a classification
point of view are reported.
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1. INTRODUCTION

The development of a More Electrical Aircraft (MEA)
is a technological transition applied for almost all the
systems in aircrafts and helicopters. In such context, the
implementation of Electro-Mechanical Actuators (EMAs)
has increased rapidly during the last years, as noticed
in Isturiz et al. (2010). Mechanical systems deployed
in aerospace environments require constraints on weigth
and robustness. When no hardware redundancy can be
afforded, for safety reasons, an actuator must be equipped
with a sophisticated diagnostic, prognostic, and recovery
system. The monitoring of mechanical components for
Fault Detection and Isolation (FDI) purposes is nowadays
well known in literature, as summarized in Capolino et al.
(2015). Fault detection and diagnosis systems implement
the following tasks, as proposed in Gertler (1998):

• Fault detection: the indication that something devi-
ates from nominal system behaviour

• Fault isolation: the determination of the fault location
• Fault identification: the quantification of the fault
magnitude

The isolation and identification tasks together are referred
to as fault diagnosis. Fault detection and diagnosis meth-
ods are usually classified into model-based and model-free
ones, see Venkatasubramanian et al. (2003) and successive
works for comprehensive reviews. Regarding the recent
employment of data-driven methods in the context of
electrical motors, in Choi et al. (2015) a robust diagnosis
technique is presented by iteratively analyzing the pattern
of multiple fault signatures in a motor current signal.
Similarly, Giantomassi et al. (2015) adopt kernel density

estimation to evaluate the probability density function of
each healthy motor and motor stator fault. A recently
proposed model-based FDI application can instead be
found in Duan and Živanović (2015), which leverages on
parameter estimation for induction motors interturn short
circuits detection. Specific works applied on EMAs in the
avionics world can be found in Narasimhan et al. (2010) for
a combination of model-based and model-free approaches,
and in Byington et al. (2004) for model-based philoso-
phy. The former paper tested various types of mechanical
(spalling on raceway, actuator jam) and sensors faults,
using a compact test bed which can be mounted on an
aircraft. Then, data can be acquired during real flights.
Tests performed during this project are based on a 1:1 scale
actuator. In the latter work, authors focused on simulating
failures on transmission gears and bearings.

The work presented in this paper deals instead with
ballscrew faults. This work has been carried out under the
HOLMES project (Health OnLine Monitoring of Electro-
mechanics actuator Safety). The purpose is to develop a
health monitoring system to detect mechanical faults for
EMAs in aerospace environment. This type of actuators
can be used to handle primary and secondary aerodynamic
surfaces. The presented material focuses on a specific type
of fault, and its presence and degree of severity have to be
assessed.

As a first contribution, this paper presents the description
of an experimental health monitoring project on electro-
mechanical actuators for airliner applications. As a second
contribution, the development of a model-free health mon-
itoring technique to perform fault detection and identifi-
cation in the previous setting is described. A preliminar
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(1) Fault condition 1: 6 light damaged + 6 medium
damaged + 6 high damaged balls per channel

(2) Fault condition 2: 20 high damaged balls per
channel

(3) Fault condition 3: 40 high damaged balls per
channel

These conditions have been chosen in order to enhance the
fault condition, by increasing both the number of damaged
balls and their damage level. Tests were performed with
both healthy and faulty nuts, by simply replacing one nut
with another. During acquisition sessions, the tempera-
ture was controlled by cooling the actuator after each
movimentation to its starting temperature, in order to
minimize the uprising of temperature-dependent effects.
A number of tests have been also performed by letting the
motor temperature to raise up, to study the possible effects
of heating on actuator performance. The test campaign’s
prospect included low temperature tests, which were per-
formed by means of a cold chamber, connected to the metal
cage which embedded the actuator, see Fig. 4. This setup
allowed to reach temperatures of −40 °C via liquid nitrogen
injection.

Fig. 4. Low temperature tests setup with motor cage detail

2.3 Test profiles

The whole test bench is controlled via a specific PC
bench, which permits to select the desired profiles to be
executed. The computer is connected to the electric drive
through a Serial Peripheral Interface (SPI) connection, and
communicates with the hydraulic cylinder via a National
Instrument (NI) CompactRIO hardware. The drive deals
with the control of the electric motor speed and current
loop, while the CompactRIO computes the control law of
the hydraulic piston. The position, or speed, profile is sent
via the RS232 protocol to an ECU linked to the motor
drive, and has the duty to close the position control loop.
The profiles used in the experimentation were discussed
with the project partners. The nominal load profile used
during the tests corresponds to a typical high lift load
profile; additional load profiles with constant 12 kN and
15 kN where employed as shown in Fig. 5, to better assess
the fault conditions. Slightly different behaviours in the
load response are due to test bench non-idealities. The
position profile has been defined as follows:

(1) Position run from 0mm to 411mm (100% of the
actuator stroke), in 20 s

(2) Acceleration of 2 s, from 0 mm
s to 21 mm

s

In order to cope with the second constraint, the motion
profile has been implemented as a speed profile, as depicted
in Fig. 6. The experimental tests consisted each in two runs
of the aforementioned speed profiles: data are recorded
during all runs, but only measurements from the second
run are retained for successive processing. This is due to
the fact that, during the first motion, test rig’s settlements
and vibration due to motion starting compromise the
validity of acquired data.
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Fig. 5. Load profiles employed during the test sessions.
The non-ideal tracking behaviour is due to test bench
limitations
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Fig. 6. Speed profile, in radiants/seconds, employed during
the test sessions. Spikes and oscillating behaviours are
visible

2.4 Measurements

Various measurements have been collected from the test
rig’s equipped electronic, with the addition of a NI cDAQ
device. The modules installed on the cDAQ consisted in
a 16 bit voltage module (to acquire the load cell for syn-
chronzation purposes) and current one (to acquire cylinder
pressures), along with a 24 bit module used to measure
the signals of two piezoelectric accelerometers mounted
in orthogonal directions on the nut. The acquisition fre-
quency for the cDAQ was set to 20 kHz; already acquired
variables (see Fig. 7), related to the EMA, were acquired
at 5 kHz and sent to the PC bench via SPI, while variables
related to the hydraulic part were measured at 1 kHz and
stored via a NI 6323 16 bit acquisition board. A type K
thermocouple was mounted on the motor surface were
the magnets lie, and acquired through a Hydra Fluke
device. An overall representation of the measurements’
information flow is presented in Fig. 7.

Variables used for control Variables that were stored
but not used to perform any health monitoring function
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work by the same authors can be found in Mazzoleni et al.
(2014). The methodology is based on a machine learning
pipeline, on the assumption that data collected from dif-
ferent system conditions belong to different “classes” that
the algorithm learns to discern. This assumption came
from the fact that non-ideal mechanical behaviours can
be detected by inspecting suitable measurements, such as
motor phase currents, see Henao et al. (2014). The chosen
algorithm indeed is able to perform correct classifications
on the test dataset, which are way better than random
assignments. A comparison of different classification algo-
rithms is presented, and the chosen one is a Gradient Tree
Boosting classifier. Methods and results are validated by
means of experimental tests, via a test rig equipped with
a motor and a production-level ballscrew transmission.

The remainder of the paper is organized as follows: in
Section 2, the experimental setup is presented and a
description of the performed tests is given, along with the
collected measurements. In Section 3, the steps involving
the design of a model-free fault detection algorithm are
outlined. Section 4 shows a comparison between different
classifiers, with indications about the choices made, and a
graphical visualization of the most important features for
fault detection is given. Section 5 is devoted to concluding
remarks and future developments.

2. EXPERIMENTAL SETUP

2.1 Application context

As depicted in Fig. 1, the test rig is composed by the main
EMA under test, equipped with a ballscrew transmission.

Fig. 1. Test rig with main components. The load cell is used
to close the hydraulic cylinder force loop, controlled
by the servovalve

The motor consists of a five phases brushless DC motor,
which is able to operate even when two phases are open.
A nut containing the recirculating spheres moves axially
over the screw, transforming the rotation into a linear
movement. A hydraulic cylinder, modeled in Cologni et al.
(2016), is used to generate the force which the EMA
has to overcome during its motion. A load cell is used
to close the force control loop. The nut under test has
two recirculating circuits, with 80 balls per channel which
alternates between steel and ceramic ones, see Fig. 2. The
fault investigated in this work consists of the damage
undergone by the the steel spheres, at different damage
levels. This fault was chosen for investigation after a
Fault Tree Analysis (FTA) and a Failure Mode and Effect

Fig. 2. Ballscrew transmission and recirculation nut detail.
The balls alternates between ceramic and steel ones

(a) Balls damage detail inside the
transmission. From left to rigth:
light, medium and high damaged
balls

(b) Quantification
of ballscrew steel
balls injected dam-
ages

Fig. 3. Injected faults on ballscrew spheres: qualitative and
quantitative views

Analysis (FMEA). The RTCA/DO-160 “Environmental
Conditions and Test Procedures for Airborne Equipment”
standard has been consulted, and low temperature tests
were performed. Other test conditions specified in the
standard have not been taken into consideration, because
the actuator was proved to be robust to them, or because
they were impossible to test.

2.2 Fault implementation and test conditions

As described in Section 2.1, the considered mechanical
fault conditions regard the spalling of steel balls inside
the ballscrew recirculation nut. The fault was injected
by a Electrical Discharge Machine (EDM). This type of
fault has been deemed representative of a real one by the
ballscrew producer. Three types of damage harshness have
been chosen. The fault quantification can be assessed by
referring to Fig. 3: the diameter d for healthy balls is
3.5mm, while, for defected balls, the entity of the fault
is respectively:

• Light damage: A = 3.3mm
• Medium damage: A = 3.2mm
• High damage: A = 3.1mm

With the aforementioned damage levels, three fault condi-
tions have been investigated during the test campaigns:
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2.4 Measurements

Various measurements have been collected from the test
rig’s equipped electronic, with the addition of a NI cDAQ
device. The modules installed on the cDAQ consisted in
a 16 bit voltage module (to acquire the load cell for syn-
chronzation purposes) and current one (to acquire cylinder
pressures), along with a 24 bit module used to measure
the signals of two piezoelectric accelerometers mounted
in orthogonal directions on the nut. The acquisition fre-
quency for the cDAQ was set to 20 kHz; already acquired
variables (see Fig. 7), related to the EMA, were acquired
at 5 kHz and sent to the PC bench via SPI, while variables
related to the hydraulic part were measured at 1 kHz and
stored via a NI 6323 16 bit acquisition board. A type K
thermocouple was mounted on the motor surface were
the magnets lie, and acquired through a Hydra Fluke
device. An overall representation of the measurements’
information flow is presented in Fig. 7.
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trade-off between computational time and quantity of data
on which to compute the features, to be of 1.5 s, with an
overlapping factor of 0.75 s. These hyperparameters have
to be tuned for the application at hand. Preprocessing of
data consisted in filtering noisy signals. The features that
are extracted for each data window are described next.

3.1 Feature Extraction

In this work, up to 15 features were computed, spanning
time and frequency domain. The indexes are:

(1) Torque-load ratio
(2) Root Mean Square value
(3) Kurtosis
(4) Skewness
(5) Frequency power via FFT transform
(6) Peak-to-valley
(7) Energy operator
(8) Crest factor
(9) Shape factor
(10) Mean frequency
(11) Frequency center
(12) Root Mean Square frequency
(13) Standard deviation frequency
(14) Sixth central moment
(15) Mean temperature

The use and computation of these indexes has been ad-
vocated in many previous fault detection applications (see
for details the work done by Lei et al. (2010), Benbouzid
(2000), Combastel et al. (2002), Rauber et al. (2010), Zarei
(2012)). Feature 1 is computed by taking the ratio of the
computed motor torque over the load measured by load
cell mounted on the hydraulic cylinder. Features from
2 to 14 are computed on the motor quadrature current
signal, while feature 15 is computed from the thermocouple
measurements. The considered spectrum in Feature 6 is
(0Hz − 50Hz], since the major frequency content of the
quadrature current lies in that range. Then, the total
frequency power in that range is used as feature. The
output of this stage is a feature matrix X. This choice
of measurements has been demanded by the application:
the aim was indeed to rely mainly on electrical variables
to perform the health monitoring.

3.2 Feature Selection and classifier design

The data were then divided into train (80%) and test
(20%) set. The train data were then scaled via a robust
standardization procedure (Rousseeuw and Croux (1992)),
which, for each feature, removes the median and divides
for the interquantile range (the interval between the 25th
quantile and the 75th quantile). This standardization was
chosen because it is more robust to outliers in the data.
The transformation, with parameters fitted on the training
set, is then applied to the test set. Then, various types
of classification algorithms were tested, such as: Logistic
Regression (LR), Support Vector Machine (SVM), Näıve
Bayes (NB) and Gradient Tree Boosting (GTB) (see Fried-
man et al. (2001) for details). All chosen classifiers are dis-
criminative, except for the Näıve Bayes one. The choice is
dictated by the fact that the classification result is of most
interest with respect to understand the data-generating

process. However, it is useful to test both classifier types,
given that, under certain conditions, generative classifiers
can reach faster their maximum accuracy bound with
respect to discriminative algorithms, see Jordan (2002).
The hyperparameters of each algorithm have been found
by using a 5-fold cross-validation (cv) on the train set.
The selected model is then trained on the training data.
The logistic regression classifier was equipped with a
L2−regularization term, and the relative hyperparameter
was tuned. The Support Vector Machine classifier used
a Radial Basis Function kernels which required to find
the proper parameters value. Regarding the Näıve Bayes
algorithm, the Gaussian likelihood was assumed. Tune
parameters of the Gradient Tree Boosting method were
the number of tree estimators, the subsample percentage
and the learning rate.

3.3 Classifier evaluation

The evaluation of each classifier is done through two differ-
ent procedures. As a first performance check, the classifiers
were evaluated on the test set, and the mean F1-score
(Powers, 2011) is reported. A value of 1 indicates perfect
classification, while a value of 0 indicates a completely
wrong result. Since the F1-score is defined for a binary
classification problem, we end up with four F1-scores, since
in this formulation there are four classes into which classify
the data (Healthy, Fault 1, Fault 2, Fault 3). This score
is computed by taking the weighted mean of the four F1-
scores. The weights are the percentage of observations for
a specific class over the total number of tests points. This
choice of metric is due to the fact that it better assesses
cases of imbalanced classes as opposed to classification
accuracy.

To check the stability of the training procedure, including
also the steps performed to find the best hyperparameters,
a nested cross-validation can be employed. It has been
shown in Cawley and Talbot (2010) that this method
better assesses the true algorithm performance, giving a
less biased estimation with respect to the stardard cross-
validation with fixed parameters, which would lead to an
optimistic evaluation. With this method, each train/test
fold may get different hyperparameter settings, resulting
in an algorithm that internally finds the best parameters
for each data set it gets. The results of this procedure are
then reported as estimation of the model true performance.
In this work a 5-fold nested-cv has been used on all the
data (training + test dataset). As before, the weighted
F1-score has been applied as performance metric. The
feature scaling is fit on the training fold and applied on
the test ones, for each training/testing folds combinations.
The output is a vector of 5 weighted F1-scores, and the
mean and standard deviation of this vector is taken as
performance metric for classifiers comparison. This leads
to an estimation of the mean F1-score with associated
standard error. If the standard error is high, it means
that the found hyperparameters are not reliable, and the
learned model, with hyperparameters selected via cross-
validation on the training set (or on all available data)
can not be deployed into production.
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Fig. 7. Schematic of the test rig components, with interactions and measurements system information
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Fig. 8. Top: motor phase A current with detail on current
shapes. Bottom: computed motor torque with detail

consist of the motor phase voltage references collected by
the motor drive, the motor angular position via a com-
bination of resolver and multiturn encoder measurement,
and the motor speed obtained by deriving the position
measurement. Variables such as the speed profile were
not considered since, being the system in closed loop, a
possible fault would be hidden in the speed or position
measurements.

Variables used for health monitoring The variables used
for the development of the model-free fault detection algo-
rithms are mainly related to phase current measurements,
with a current sensor directly installed on the motor drive.
The motor’s torque, along with the quadrature current,
has been computed from the phase currents and the motor
mechanical sectors, Fig. 8. The motor’s commutation logic
is provided by means of hall sensors and an incremen-
tal encoder. The motor’s torque constant was obtained
through bench characterization. Other variables used to
compute the fault detection indexes are the load cell and
the thermocouple.

3. MODEL-FREE FAULT DETECTION STRATEGY

This section presents the logical steps adopted in order
to develop the machine learning based model-free solu-
tion. The process pipeline is sketched in Fig. 9, where
details about each phase are described. The steps consists
into feature extraction, feature selection with classifier
design, and classifier evaluation. The motivations behind

Fig. 9. Model-free methodology flowchart

the data-driven solution over the model-based one has
to be sought into complications that arose with the ex-
perimental setup at hand. These problematics are related
to unknown disturbances and friction characteristics, ob-
served during data analysis, that depend on load entity
and position, causing a poor system repeatability. On the
other hand, the possibility to perform many experimental
tests with different fault conditions, laid the foundation
for a model-free approach, which is independent of any
modeling, taking a higher vision on the system at hand.
The proposed methodology consists in computing features
on data obtained through a sliding window, which runs
on the entire measurement vectors, selecting each time
a portion of data. The length of the sliding window has
been chosen, after a sensitivity analysis and guided by a
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trade-off between computational time and quantity of data
on which to compute the features, to be of 1.5 s, with an
overlapping factor of 0.75 s. These hyperparameters have
to be tuned for the application at hand. Preprocessing of
data consisted in filtering noisy signals. The features that
are extracted for each data window are described next.

3.1 Feature Extraction

In this work, up to 15 features were computed, spanning
time and frequency domain. The indexes are:

(1) Torque-load ratio
(2) Root Mean Square value
(3) Kurtosis
(4) Skewness
(5) Frequency power via FFT transform
(6) Peak-to-valley
(7) Energy operator
(8) Crest factor
(9) Shape factor
(10) Mean frequency
(11) Frequency center
(12) Root Mean Square frequency
(13) Standard deviation frequency
(14) Sixth central moment
(15) Mean temperature

The use and computation of these indexes has been ad-
vocated in many previous fault detection applications (see
for details the work done by Lei et al. (2010), Benbouzid
(2000), Combastel et al. (2002), Rauber et al. (2010), Zarei
(2012)). Feature 1 is computed by taking the ratio of the
computed motor torque over the load measured by load
cell mounted on the hydraulic cylinder. Features from
2 to 14 are computed on the motor quadrature current
signal, while feature 15 is computed from the thermocouple
measurements. The considered spectrum in Feature 6 is
(0Hz − 50Hz], since the major frequency content of the
quadrature current lies in that range. Then, the total
frequency power in that range is used as feature. The
output of this stage is a feature matrix X. This choice
of measurements has been demanded by the application:
the aim was indeed to rely mainly on electrical variables
to perform the health monitoring.

3.2 Feature Selection and classifier design

The data were then divided into train (80%) and test
(20%) set. The train data were then scaled via a robust
standardization procedure (Rousseeuw and Croux (1992)),
which, for each feature, removes the median and divides
for the interquantile range (the interval between the 25th
quantile and the 75th quantile). This standardization was
chosen because it is more robust to outliers in the data.
The transformation, with parameters fitted on the training
set, is then applied to the test set. Then, various types
of classification algorithms were tested, such as: Logistic
Regression (LR), Support Vector Machine (SVM), Näıve
Bayes (NB) and Gradient Tree Boosting (GTB) (see Fried-
man et al. (2001) for details). All chosen classifiers are dis-
criminative, except for the Näıve Bayes one. The choice is
dictated by the fact that the classification result is of most
interest with respect to understand the data-generating

process. However, it is useful to test both classifier types,
given that, under certain conditions, generative classifiers
can reach faster their maximum accuracy bound with
respect to discriminative algorithms, see Jordan (2002).
The hyperparameters of each algorithm have been found
by using a 5-fold cross-validation (cv) on the train set.
The selected model is then trained on the training data.
The logistic regression classifier was equipped with a
L2−regularization term, and the relative hyperparameter
was tuned. The Support Vector Machine classifier used
a Radial Basis Function kernels which required to find
the proper parameters value. Regarding the Näıve Bayes
algorithm, the Gaussian likelihood was assumed. Tune
parameters of the Gradient Tree Boosting method were
the number of tree estimators, the subsample percentage
and the learning rate.

3.3 Classifier evaluation

The evaluation of each classifier is done through two differ-
ent procedures. As a first performance check, the classifiers
were evaluated on the test set, and the mean F1-score
(Powers, 2011) is reported. A value of 1 indicates perfect
classification, while a value of 0 indicates a completely
wrong result. Since the F1-score is defined for a binary
classification problem, we end up with four F1-scores, since
in this formulation there are four classes into which classify
the data (Healthy, Fault 1, Fault 2, Fault 3). This score
is computed by taking the weighted mean of the four F1-
scores. The weights are the percentage of observations for
a specific class over the total number of tests points. This
choice of metric is due to the fact that it better assesses
cases of imbalanced classes as opposed to classification
accuracy.

To check the stability of the training procedure, including
also the steps performed to find the best hyperparameters,
a nested cross-validation can be employed. It has been
shown in Cawley and Talbot (2010) that this method
better assesses the true algorithm performance, giving a
less biased estimation with respect to the stardard cross-
validation with fixed parameters, which would lead to an
optimistic evaluation. With this method, each train/test
fold may get different hyperparameter settings, resulting
in an algorithm that internally finds the best parameters
for each data set it gets. The results of this procedure are
then reported as estimation of the model true performance.
In this work a 5-fold nested-cv has been used on all the
data (training + test dataset). As before, the weighted
F1-score has been applied as performance metric. The
feature scaling is fit on the training fold and applied on
the test ones, for each training/testing folds combinations.
The output is a vector of 5 weighted F1-scores, and the
mean and standard deviation of this vector is taken as
performance metric for classifiers comparison. This leads
to an estimation of the mean F1-score with associated
standard error. If the standard error is high, it means
that the found hyperparameters are not reliable, and the
learned model, with hyperparameters selected via cross-
validation on the training set (or on all available data)
can not be deployed into production.
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Table 1. Classifiers comparison summary

Classifier
Mean

Test set
F1-score

Mean
Nested cv
F1-score

Std. error
Nested cv
F1-score

LR 0.25 0.21 0.024

SVM 0.70 0.70 0.005

NB 0.13 0.12 0.006

GTB 0.83 0.82 0.009

4. RESULTS DISCUSSION

The final comparison results are reported in Table 1. The
best performing classifier is the Gradient Tree Boosting
algorithm, with a weigted mean F1-score obtained through
nested cross-validation of 0.82. The Logistic Regression
adn Näıve Bayes algorithm failed to properly capture
most of the data traits, not being enough flexible in their
decision boundaries. The low standard error of the mean
F1-score obtained by nested cross-validation indicates that
the procedure used to select the classifiers hyperparame-
ters is stable, not exibiting large variations when different
datasets are used to tune them. Fig. 10 depicts the im-
portance of each feature used, as considered by the GTB
algorithm. The most informative indexes, as concerns the
classification point of view, are the cage temperature, the
torque to load ratio, and the computed frequency content.
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Fig. 10. Features importance

5. CONCLUSIONS AND FUTURE DEVELOPMENTS

This paper presented a practical approach to the fault
detection and identification problem. The application de-
scribed regarded the health monitoring of mechanical com-
ponents for electro-mechanical actuators deployed in an
aerospace environment. Future developments include the
combination of the proposed approach with a model-based
methodology, and applications of the framework to other
fault types and conditions.
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