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Abstract— In this paper, a gain-scheduling control law is
proposed to attenuate the oscillations in overhead cranes
induced by manual operations, for different values of the rope
length. To take into account the practical limits in controller
implementation, a fixed-order controller is tuned, by enforcing
certain robustness and performance constraints. The proposed
strategy is experimentally tested on a real bridge crane and
compared to a time-invariant solution.

I. INTRODUCTION

It is well known that overhead cranes suffer from safety
problems due to the flexibility of the rope linking the load
to the hoist. In fact, the load swinging is usually very poorly
damped and the uncontrolled sway might be dangerous for
human operators. Moreover, the oscillations require a certain
time to stop, thus slowing the overall movement time.

Many approaches have been proposed to solve the problem
of the load oscillations induced by the movement of the
crane. For instance, a second order sliding mode control has
been used in [1] while in [2] an adaptive sliding mode control
is employed. The approaches in [3] and [4] adopt a time
optimal perspective, while [5] and [6] propose an open-loop
input shaping method.

All the above solutions do not consider the fact that the
rope length and the mass of the load may change during the
system operation; nevertheless, such events occur quite often
in practical working cycles. For this reason, gain-scheduled
controllers appear to be a suited solution to the problem of
sway suppression.

Among the solutions addressing the problem at hand from
a gain-scheduling perspective, the method in [7] considers
the length of the rope as a scheduling signal for an implicit
gain scheduling controller and employs the knowledge of the
upper bounds in the rate of change of such a parameter to
ensure the stability of the closed-loop system. In [8] a state-
space interpolation method is used for an analogous design
purpose. This method, albeit providing good performance,
does not ensure the stability of the systems in case of
parameter variations.

As far as we are aware, in all the above contributions, the
simplicity of the controller structure and the robustness to
model uncertainty are not explicit requirements.

In this paper, the problem of sway cancellation in overhead
bridge cranes is tackled in a gain-scheduled rationale, but
also taking into account the simplicity of the final controller
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Fig. 1. Block diagram of the overall system.

(to make it suitable for implementation on a wide range
of micro-controllers or PLCs) and finding the best trade
off between performance and robustness. More specifically,
a fixed-order gain scheduling controller is designed (thus
with a user-defined structure) aimed to minimize the integral
error but also constraining the main robustness margins. The
proposed method has been first introduced in [9], but herein
the minimization of the settling time is also considered.

The fixed-order gain scheduling controller is experimen-
tally implemented on a real bridge crane and the achieved
performance is compared to that of a linear time-invariant
controller tuned according to the same specifications. The
experiments show that, although the employed structure is
very simple, the gain scheduling controller is able to suppress
the sway in all the conditions of interest, unlike the time-
invariant solution. Finally it has to be stressed that, in the
proposed closed-loop solution, where the oscillations are
estimated through proper measurements and automatically
compensated by the feedback controller, the operator can
still manually operate the system, without defining a-priori
any reference trajectory.

The remainder of the paper is organized as follows.
Section II describes the experimental setup and the problem
statement. In Section III, the fixed-order gain-scheduling
control design method is described, with a focus on how
to select the different tuning knobs. Section IV presents the
experimental results. The paper is ended by some concluding
remarks.

II. PROBLEM STATEMENT AND EXPERIMENTAL LAYOUT

A description of the bridge crane, for each axis, is depicted
in Figure 1. The operator, using a button panel, sends
commands to the motors and varies the position x and the
sway angle ϑ. The oscillation is then controlled by means of
a feedback loop.

The purpose of the paper is to design a controller which is
able to remove the sway without affecting the human/system
interaction.

The bridge crane that will be used in this paper has a
maximum payload of 20000 kg. On the X-axis and Y-axis,

978-1-5090-4537-2/17/$31.00 ©2017 IEEE 56



X

M

θ

x
z

m

l

b

Fig. 2. Structure of a mono-dimensional bridge crane.

it can move at a maximum speed of 1 m/s, while on the
Z-axis, it can lift the objects at 0.2 m/s. The bridge has an
elevation from the ground of 7 m, while the trolley can span
for 20 m while the bridge on the Y-axis can move for 80 m.

In order to estimate the oscillation angle, an inertial
sendor composed by a tri-axial accelerometer and a tri-axial
gyroscope has been placed on the rope that connects the load
to the trolley. The angle is then estimated using the Extended
Kalman filter described in ([10]).

The estimated angle is then measureed by a Programmable
Logic Controller (PLC). The actuation chain, from the PLC
command to the speed of the motor is not ideal: the band-
width of the motor controller can be considered wide enough
for our purposes, but the pure input/output delay cannot be
neglected. This nominal delay has a fixed amount that can
be a-priori identified and it is due to the disabling of the
brakes.

III. FIXED-ORDER CONTROLLER DESIGN

The system is assumed to be completely decoupled as
discussed in [11], so the model is built for a mono-axial
cart-pendulum as the one visible in Figure 2.

To derive a control-oriented model of the system, some
assumptions are made, as follows.

• The payload is connected to the trolley by a massless,
rigid rope.

• The trolley and the bridge move along the track without
slipping.

• The speed control system is assumed to be ideal, that is
the actual speed is assumed to be equal to the reference
one.

• The moment of inertia of the load is neglected, and it is
treated as a point mass (notice that this approximation
is valid also in case of a multi-wire rope [12]).

The model, built using the Eulero-Lagrange equations of
motion, can be linearized about θ̇ = 0, θ = 0 and u = 0,
obtaining, after simple elaborations [4]:

θ (s)

Ẋ (s)
= F (s) =

− 1
l
s

s2 + b
ml2

s+ g
l

(1)

The above model shows that, even for fixed load mass,
a change of the rope length may heavily influence the

system dynamics. For this reason, a time invariant controller
may have poor performance and even encounter stability
problems.

A. Gain-scheduling control

The procedure used to design the controller is based on
the methodology described in [13]; in order to tune the
fixed-order linearly parameterized gain-scheduled controller,
a linear programming approach is used. The Nyquist diagram
of the open-loop transfer function is shaped in order to
respect some constraints which will guarantee lower bounds
on the robustness margin and optimal closed loop load
disturbance rejection in terms of Integrated Error (IE):

IE =

∫

∞

0

|e(t)|dt (2)

where e(t) is the difference between the desired output and
the measured output. The closed-loop stability is locally
ensured (i.e., for fixed values of the scheduling parameter).

Once the structure of the controller and the constraints on
the robustness and performance are defined, the problem is
solved using an optimization algorithm. In particular, a linear
programming problem is solved ([14]).

1) Plant Model: The method can be applied only to a par-
ticular class of SISO LPV systems: the plant model depends
on a nl−dimensional vector l of scheduling parameters and
must have no Right Half-Plane (RHP) poles.

The definition of the nl−dimensional vector will define a
set of models. Suppose that this set covers all the range of
values that can be assumed by the scheduling parameter and
that it is available a sufficient amount of frequency points
N to capture the dynamics of the systems; then, the plant
model can be parameterized as

M = {F (jωk, li) | k = 1, . . . , N ; i = 1, . . . ,m} (3)

where ωk is the vector of frequency in which the system will
be evaluated and li is the vector of the scheduling parameter.

2) Controller definition: Consider the following class of
controllers:

K (s, l) = ρT (l)φ (s) (4)

with
ρT (l) =

[

ρ1(l), ρ2(l), . . . , ρnp
(l)

]

φT (l) =
[

φ1(l), φ2(l), . . . , φnp
(l)

] (5)

where np is the number of parameter ρ polinomially depen-
dent from l and φi(s), i = 1, . . . , np are rational basis
functions with no RHP poles. The dependence of ρi on the
parameter l can be represented using a polynomial of order
pc:

ρi(l) = (ρi,pc
)
T
lpc + · · ·+ (ρi,1)

T
l + (ρi,0)

T (6)

where lk represent the element-by-element power of k of
vector l. The controller can be completely defined using only
the vectors of real parameters ρi,pc

, . . . , ρi,1, ρi,0.
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Following the previous parametrization, a PID controller,
with a quadratic dependence from the scheduling variable
can be synthesized as follows:

ρT (l) = [Kp(l),Ki(l),Kd(l)] (7)

φT (s) = [1,
1

s
,

s

1 + Ts
] (8)

where T is the time constant of the noise filter; as said before,
considering a second order dependence from the scheduling
variable l, the controller parameters ρ(l) are then:

Kp(l) = Kp,0 +Kp,1l +Kp,2l
2 ,

Ki(l) = Ki,0 +Ki,1l +Ki,2l
2 ,

Kd(l) = Kd,0 +Kd,1l +Kd,2l
2

(9)

The parametrization of the controller defined before asso-
ciated with a set of non-parametric models, allow to write
every point of the Nyquist plot of the open-loop L(jω, li) =
K(jω, li)F(jω, li) as a linear function of the vector ρi(l)
([15]):

K(jω, li)F(jω, li) = ρT (li)φ(jω)F(jω, li) =

ρT (li)R(ω, ll) + jρT (li)I(ω, li) =

(Ml̄i)
TR(ω, l̄i) + j(Ml̄i)

TI(ω, l̄i) (10)

where

M =







(ρ1,pc
)T . . . (ρ1,1)

T (ρ1,0)
T

...
...

. . .
...

(ρnp,pc
)T . . . (ρnp,1)

T (ρnp,0)
T







l̄i =
[

lpc

i . . . li ~1
]

,

with R(ω, ll) and I(ω, li) defined as the real and the
imaginary part of φ(jω)F(jω, li).

The system is now fully defined, and some optimization
in terms of performance and robustness, can be performed.

3) Optimization for performance: Once the structure of
the controller is defined, the optimization problem aim to
find the controller parameters which are able to satisfy the
following performance indexes:

• The system must remain stable for each variation, within
a range, of the scheduling parameter. These constraints
can be called robustness constraints.

• The Integrated Error (IE) must be reduced at its min-
imum. These constraints can be named performance

constraints.

Solving the following minimization problem permits to
satisfy the previous indexes:

max
M

Kmin

s.t.
(

Ml̄i
)T

(cotαI(ωk, li)−R(ωk, li)) +Kr ≤ 1

for all ωk, i = 1, . . . ,m
np
∑

j=1

γjρj (li)−Kmin ≥ 0 for i = 1, . . . ,m

(11)

where M is the matrix of the controller parameters and
Kmin is a term used to ensure the maximization of the
low frequency part of the controller, represented by the term

k0 =
np
∑

j=1

γjρj (li). The parameters γj allow to express k0 as

a linear combination of ρ(l) in order to keep the formulation
convex. For further details, see [9], [13].

The design variables are Kr, which is linked to the gain
margin value, and α, whose value is related to the phase
margin (as described later in this Section). In Equation (11),
the first constraints are related to the robustness performance,
while the second type defines a constraint on the perfor-
mance. Notice that the performance constraints focus on
disturbance rejection, which is our goal. For this reason,
the low-frequencies components of the controller have to be
maximized ([16]).

The robustness constraints guarantee that the Nyquist plot
of the open loop system will be below a line b that divide the
complex plane in two regions, as visible in Figure 3. The line
crosses the real axis in −1+Kr with 0 < Kr < 1 and with
an angular coefficient defined by the value of α ∈ ]0° 90°].
Ensuring that the Nyquist contour will be below the line b has
the same meaning of ensuring that the open loop Nyquist plot
wil not encircle the critical point (−1, j0). In this manner,
exploiting the Nyquist criterion ([17]), it is possible to assure
asymptotic stability against slow variation of the scheduling
parameter.

Furthermore, placing the Nyquist curve of the open-loop
transfer function on the right side of b, ensures lower bounds
on conventional robustness margins ([9]):

Gm ≥
1

1−Kr

(12)

φm ≥

arccos

(

(1−Kr) sin
2 α+ cosα

√

1− (1−Kr)
2
sin2 α

)

(13)

Mm ≥ Kr sinα (14)

Where Gm, φm and Mm are the gain margin, the phase
margin and the modulus margin.
As said before, α and Kr, are the design variables of
the controller and their values highly influence the system
performance. A wise decision of their values will be subject
to discussion.

Analyzing the maximization problem presented in (11),
it appears that the number of constraints depends on the
frequency points ω and on the range of the scheduling
parameter. Due to that, in order to solve the problem these
two variables must be bounded. In particular, the problem
related to the scheduling parameter is easy to solve since it
is obvious that the set of non-parametric models available
defines the length of the vector li.
The problem related to the frequency points, by the way, it
is still unresolved since they are infinite. A solution to that is
gridding the frequency domain: first, the band of the system
must be analyzed, and then in that band, a finite number
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Fig. 3. Definition of the parameters used during the control design. The
line b, defined by the parameter Kr and the angle α, divides the complex
plane in two areas. The green area, below the line b is considered safe,
while the red one, over the line b has to be avoided in order to keep the
stability of the system.

of equally spaced points is taken, making the number of
constraints finite. Notice that the best discretization of the
frequency axis is a trade-off choice between computational
load and accuracy. However, this choice is strongly depend-
ing on the shape of the frequency response of the system
and a general rigorous way to grid the frequency axis is still
object of ongoing research.

B. Tuning of α

The angle α is the one by which the line b crosses the
real axis defining the area where the Nyquist plots need to
stay. The value of this parameter has a relevant role inside the
tuning of the controller, leading to an increment or decrement
of the performance.
The other design variable Kr is directly connected to the
Gain Margin of the closed loop system by Equation (12).
Once this performance index is fixed, the others (module
margin and phase margin) can be decided and consequen-
tially even the value of α can be chosen. Instead of max-
imizing the phase margin, our approach is different: it is
important to remove the sway as fast as possible, even
permitting overshoot in the angle. For this reason it has been
decided to fix the gain margin in order to obtain a robust
controller and then compute the value of α by minimizing
the time response to the sway disturbance. Summarizing, the
following procedure is adopted.

1) Grid the parameter α within its range;
2) Tune a controller for each value of α by solving the

constrained optimization problem (11);
3) Evaluate the settling time ts of the closed-loop system

for each α, where ts is defined as the time elapsed
from the application of an ideal instantaneous step
input to the instant at which the output has entered
and remained within a symmetric error band of 5%;

4) Choose the α which minimizes the mean of the settling
time ts (over the scheduling parameter l)

Jα =
1

nl

nl
∑

i=1

ts(α, li).

An alternative to the minimization of the mean of the
obtained settling times is the minimization of the worst case.
In that sense, the following cost could be used in place of
Jα:

Vα = max
i

ts(α
(i)).

IV. EXPERIMENTAL RESULTS

In this section the results achieved on the real bridge
crane will be presented. First, two different controller tuning
processes will be presented and tested in simulation. Then,
the same controllers will be tested on the real system.

A. Controller tuning

Two different controllers are tuned: a time-invariant one
based on the model at l = 4.5 m and a gain-scheduling one
following the method described in Sec. III.
The controller structure has been defined as

K(s, l) = P1(l)
1

1 + Ts
+ P2(l)

s

1 + Ts
(15)

where P1 and P2 have a quadratic dependence on the
scheduling parameter l: Pi (l) = Pi,2l

2 + Pi,1l + Pi,0 i =
1, 2. The selected structure arises from various consideration
about the aim of the controller and the model of the system.
First, the controller was chosen without a pure integral
part since the cancellation with the derivator in the transfer
function may hide some unstable behavior. For this reason,
a pole in low frequency has been added; this pole provides
also high gain at low frequency, increasing the disturbance
rejection. A zero is used to increase the phase of the system.
Finally, the controller has a relative degree equal to zero,
avoiding the introduction of delay in the loop.

The only parameter that must be chosen for the tuning of
the controller is Kr. A good trade-off between robustness
and performance is found to be Kr = 0.2, which is then set
as our design parameter.

1) Time Invariant controller - KTI : To tune a time-
invariant controller, the structure in (15) is modified as

K(s) = P̄1
1

1 + Ts
+ P̄2

s

1 + Ts
. (16)

Using the method described in Section III, the controller
does not guarantee robustness and optimal performance for
all the variation of l, but only for l = 4.5m. This leads to
a loss of performance for the other values of the scheduling
parameter.

The bridge crane used for the tests has a rope length which
spans from 1 to 6.5 m, leading to a frequency bandwidth
going from 0.19 Hz to 0.49 Hz. For this reason, the
frequency limits has been set from 0.01 Hz to 10 Hz, gridded
every 0.001 Hz, leading to 9991 frequency points.

The gain margin Kr, has been set equal to 0.2, while
the other design variable, α, as described in III-B, has been
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Fig. 4. Nyquist plots of the system with the KTI controller. The stability
is guaranteed only for l = 4.5m.

tuned evaluating the step response time; in particular the best
performance are achieved for α = 80°. These values lead to a
bound in the gain margin of 1.25 and a phase margin of 28°.
We stress that these values are valid only for the controller
tuned at 4.5 m.

The obtained controller parameters are: P̄1 =
−2.704, P̄2 = −9.882.

Figure 4 shows the Nyquist diagrams of the loop transfer
function with the previously computed controller. In
particular the Nyquist contour is presented for different rope
lengths: from 1 to 6.5 m. Since during the tuning phase
only the model at 4.5 m has been considered, the constraints
related to performance and robustness may not be respected.
In particular it is clear how the Nyquist contour exceeds the
line b in 4 of the 6 different models (without considering
the one at 4.5m). More in deep, the controller for the model
at 1 and 2 m pushes the Nyquist diagram to rotate around
the critical point (−1, j0) making the closed loop system
unstable.

2) Gain Scheduling - KGS: The gain scheduling has been
tuned exploiting six different identified model at different
rope length. In particular the rope length varied from 1 to
6.5 with 6 almost equispaced steps. The controller has the
same structure of the one described in Sections IV-A.1 and
III. The two parameters of the controller have a quadratic
dependence on the scheduling parameter.
The frequency band is the same of the KTI controller, so the
number of constraints related to the robustness index for each
rope length is still the same, 9991. The difference here is that,
instead of only one scheduled parameter, there are 6 different
values of the parameter. This leads to 9991 · 6 = 59946
constraints. The other type of constraints, the performance
ones, are related only to the number of values assumed by the
scheduling parameter, so only 6, leading to a total number
of 59952 constraints.
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Fig. 5. Nyquist plots of the system with the Gain Scheduling controller.
All the lines remain bounded by the line b.

The optimization problem leads to these controller pa-
rameters: P1(l) = −0.004 · l2 + 0.016 · l − 2.66, P2(l) =
0.433 · l2−3.338 · l+1.451. These parameters were obtained
with an α = 75°, which permits to minimize the step
response time, and a Kr = 0.2. These values permits to have
a gain margin equal to 1.25 and a phase margin of 24.4°.
These indexes represent a lower bound for all the different
values assumed by the scheduling parameter l. With such a
controller, as visible in Figure 5, all the Nyquist plots for
different rope lengths are in the safe area, below the line b
defined by the parameters α and Kr.

In Figure 6, the step response of the KTI controller, the
KGS controller and the system without control are shown.
It can be observed that the KTI controller, at its tuning
point 4.5 m, has better performance compared to the Gain
Scheduling controller.
At 6 m the time invariant controller still have better perfor-
mance compared to KGS , but the performance loss in the
Gain Scheduling case is due to the high level of robustness
requested, which is not granted by KTI . In the 3 m case
instead, the damping of the sway is more similar.

B. Experimental results

In this subsection, some tests on the bridge crane described
in Section II are presented, to evaluate the performance of
the two controllers from a comparative perspective. Three
tests at different rope length are made:

• Test 1: step response of the system with l = 3 m;
• Test 2: step response of the system with l = 4.5 m;
• Test 3: step response of the system with l = 6 m;

The input of the system, in these three tests, is not a real step,
since it is physically impossible to implement a real step on
a mechanical system like the bridge crane. Due to the high
inertia and to some structural limitations it was possible to
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Fig. 6. Simulation results of a step response of the closed loop system
without control, with the time invariant and with the gain scheduling
controller, for three different values of the rope length.
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Fig. 7. Real tests made on the bridge crane. The results are shown for
the system with the time invariant controller and with the gain scheduling
controller, for three different values of the rope length.

use as input only a ramp that reach the maximum speed in 1
second. Higher acceletarions introduce slipping of the wheel
on the track and are outside the nominal operation range of
the system.

The results of these tests can be seen in Figure 7. These
tests show the effectiveness of the Gain Scheduling con-
troller, which is able to attain the aim of reducing the sway of
the load in all the conditions. KGS is more robust compared
to the KTI one; in fact, in the Test 1 the system with the
KTI controller is unstable.

These results are confirmed by computing the RMS of the
oscillations. KTI has RMS values of 4.89, 1.23 and 1.40
respectively at 3, 4.5 and 6 m. KGS shows almost constant
values: 1.49, 1.32 and 1.35 at the same rope length values.

V. CONCLUSIONS

In this paper, the problem of sway reduction in bridge
cranes is tackled. To this aim, a fixed-order gain scheduling
controller is designed, with the aim of being robust with
respect to unmodeled dynamics and maximizing the speed
performance. The original tuning method has been extended
by adding a performance oriented tuning of α and the
resulting controller has been experimentally validated and
compared with a time-invariant law tuned according to the
same specifications. The proposed control algorithm, thanks
to its low computational burden, can be implemented on a
low cost hardware.

Future work will be devoted to LPV control of bridge
cranes for fast load lifting.
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