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A motivational example

Gas and Oil value chain
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A motivational example

Higher Profit

Antonio Ferramosca Fundamentals of MPC 4 Bergamo, 20/06/2022 4 / 97



Hierarchical control structure
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Classic control vs. advanced control
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Classic control system
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Classic control vs. advanced control

Classic control theory Advaned control theory
Systems Linear, time-invariant and SISO Linear or Non-linear, time-variant

or time-invariant and MIMO
Domain frequency time
Initiual conditions Not allowed Allowed
Control systems design Based on Trial and error meth-

ods, which do not allow optimiz-
ing control techniques

allow optimizing control tech-
niques, according to arbitrary
performance indexes and sub-
ject to variable limitations

System description External: input-output polinomial
description

Internal: n first order differential
equation, for systems described
by differential equation of order n
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Optimizing control
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Optimizing control concept

A main concept regarding advanced control is that of finding an optimal
performance according to a specified objective, subject to the system
variable limits.

1: Define a control objective. What the controller should do: steering
the system quickly to a given point or set; steering the system to a given
point or set using the less control effort; minimizing an economic cost
function in both, the path and the final point or set, etc.

2: Model and Constraints. Consider the possibilities that the system
gives us to be controlled: we need a dynamic model, which includes
limits for the variable as a part of the system description.
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Constraints: Saturation concept

(Saturation) We will say that a variable x of a given system - constrained to
be in the compact set X ⊂ Rnx - is saturated if it is in the boundary of X, ∂X,
and this implies that the control objectives cannot be achieved.

If the control objective can be achieved, and to do that it necessary to
keep the variable x in ∂X, then variable x is not saturated =⇒ it is a
concept depending not only on the variable limits, but on the control
objective.

We could have: transient saturation (associated to the velocity of the
convergence, etc), or/and stationary saturation (when the target set or
point is outside the feasible set)

The concept of saturation is important in the context of Economic MPC
since usually the control objective is to push the system to some limit, to
maximize benefits and minimize costs.
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Constraints: Controllability of constrained systems

Consider the following inverted pendulum:
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Constraints: Controllability of constrained systems

State variables: position and velocity of the cart, and angular position and angular velocity of the
pendulum
Controlled Output: position of the cart and angular position of the pendulum
Manipulated input: force applied to the cart. The force is subject to the following constraints:

sat1(u) =

 1 if u > 1,
u if |u| ≤ 1,
−1 if u < −1,

so the constrained system can be described by

x(k + 1) = Ax(k) + Bsat1(u(k))

y(k) = Cx(k)

Control Possibilities
Next we will simulate a closed-loop (undefined control strategy by the moment) to see what can we do
with this system.
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Constraints: Controllability of constrained systems
Assume an initial disturbance in the angular position (θ(0) = 0.1) to be rejected.

Solid line: aggressive controller; dashed line: more conservative controller.

Although the aggressive controller saturates the input at the first time instants,
both controllers stabilize/control the closed-loop system.
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Constraints: Controllability of constrained systems

Assume now a reduced input constraint: U = {u : −0.5 ≤ u ≤ 0.5}

Output: dashed-dotted line. Unstable closed-loop behavior (formally, the
disturbance steers the system outside the maximum controllable set).

Conclusion: constraints affect the system controllability and stability
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How to deal with constraints
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Approaches to Constrained Control:

To get the most out of a system you need to push up against limits

According to Goodgwin et al. (2005), we have the following approaches:

Cautious: back off performance demands so constraints are not met
drawback: poor performance.

Serendipitous: allow occasional constraint violation drawback:
saturation could occurs, and so unstable behavior
Tactical: include constraints from the beginning, in the controller design
(MPC). This way, any model representation includes not only the usual
model parameters, but the corresponding variable limits.
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Example: linear quadratic regulator (LQR) applied to a
linear system
Consider an objective function of the form:

VN (x (0) , u) =
1
2

N−1∑
k=0

(x(k)T Qx(k) + u(k)T Ru(k)) +
1
2

x(N)T Px(N)

where u denotes the control sequence {u(0), u(1), ..., u(N − 1)} and x(k) denotes the corresponding state
sequence. u and x(k) are related by the linear state equation (model):

x(k + 1) = Ax(k) + Bu(k), k = 0, 1, ...,N − 1

where x(0) (the initial state) is assumed to be known. The following parameters allow one to influence
performance:

the optimization horizon N

the state weighting matrix Q

the control weighting matrix R

the terminal state weighting matrix P.

For example, reducing R gives less weight on control effort, hence faster response.
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Example: linear quadratic regulator (LQR) applied to a
linear system

Consider the linear system:

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

where A =

[
1 1
0 1

]
, B =

[
0.5
1

]
y C =

[
1 0

]

This system is the zero-order hold discretisation with sampling period 1 of the double integrator:
d2y(t)

dt2
= u(t).

Manipulated input: force (acceleration and brake, depending of the sign)

States: position and velocity of the mass, Initial state: x(0) = [−6 0]T ,

Controlled output: position of the mass.

The physical constraints are given by |u(k)| ≤ 1, for all k, and they are modeled by the saturation
function.
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Closed-loop
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Cautious Design

(N = ∞, P = 0) and weighting matrices Q = CTC =

[
1 0
0 0

]
and

R = 20, gives the linear state feedback law:

u(k) = −Kx(k) = −[0.1603 0.5662]x(k).

With this control law, the limits are not reached by the input. However, a
conservative performance is obtained.
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Cautious Design

Figure: u(k) and y(k) for the cautious design with weights Q = CT C and R = 20.
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Serendipitous Design
Need a faster response? Reducing R = 2.

Figure: Unconstrained LQR design u(k) = −Kx(k): dashed line. Serendipitous strategy,
u(k) = −sat1(Kx(k)): solid line.

The input would saturate if constraints are present in the system.
Anyway, even with the saturation, the controller seems to work!

Antonio Ferramosca Fundamentals of MPC 40 Bergamo, 20/06/2022 23 / 97



Serendipitous Design
Need a faster response? Reducing R = 2.

Figure: Unconstrained LQR design u(k) = −Kx(k): dashed line. Serendipitous strategy,
u(k) = −sat1(Kx(k)): solid line.

The input would saturate if constraints are present in the system.
Anyway, even with the saturation, the controller seems to work!

Antonio Ferramosca Fundamentals of MPC 41 Bergamo, 20/06/2022 23 / 97



Serendipitous Design
Need a faster response? Reducing R = 2.

Figure: Unconstrained LQR design u(k) = −Kx(k): dashed line. Serendipitous strategy,
u(k) = −sat1(Kx(k)): solid line.

The input would saturate if constraints are present in the system.

Anyway, even with the saturation, the controller seems to work!

Antonio Ferramosca Fundamentals of MPC 42 Bergamo, 20/06/2022 23 / 97



Serendipitous Design
Need a faster response? Reducing R = 2.

Figure: Unconstrained LQR design u(k) = −Kx(k): dashed line. Serendipitous strategy,
u(k) = −sat1(Kx(k)): solid line.

The input would saturate if constraints are present in the system.
Anyway, even with the saturation, the controller seems to work!

Antonio Ferramosca Fundamentals of MPC 43 Bergamo, 20/06/2022 23 / 97



Serendipitous Design

Let’s "push our luck" further: R = 0.1 for an even faster response

Figure: Unconstrained LQR design u(k) = −Kx(k): dashed line. Serendipitous strategy,
u(k) = −sat1(Kx(k)): solid line.

Unconstrained case: very fast response.
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Serendipitous Design
Let’s "push our luck" further: R = 0.1 for an even faster response

Figure: Unconstrained LQR design u(k) = −Kx(k): dashed line. Serendipitous strategy,
u(k) = −sat1(Kx(k)): solid line.

Saturated case (which represents reality): slower response (settling time
of 12 samples).
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Serendipitous Design
The control law u(k) = −sat1(Kx(k)) partitions the state space into three
regions in accordance with the definition of the sat function.

Antonio Ferramosca Fundamentals of MPC 48 Bergamo, 20/06/2022 26 / 97



Serendipitous Design

The control law u(k) = −sat1(Kx(k)) partitions the state space into three
regions in accordance with the definition of the sat function.

Hence, the serendipitous strategy can be characterized as a switched
control strategy in the following way:

u = κ(x) =


−Kx if x ∈ R0,

1 if x ∈ R1,
−1 if x ∈ R2.

Notice that this is simply an alternative way of describing the
serendipitous strategy since for x ∈ R0 the input actually lies between the
saturation limits. The partition is shown in following figure.

Antonio Ferramosca Fundamentals of MPC 49 Bergamo, 20/06/2022 27 / 97



Serendipitous Design

The control law u(k) = −sat1(Kx(k)) partitions the state space into three
regions in accordance with the definition of the sat function.

Hence, the serendipitous strategy can be characterized as a switched
control strategy in the following way:

u = κ(x) =


−Kx if x ∈ R0,

1 if x ∈ R1,
−1 if x ∈ R2.

Notice that this is simply an alternative way of describing the
serendipitous strategy since for x ∈ R0 the input actually lies between the
saturation limits. The partition is shown in following figure.

Antonio Ferramosca Fundamentals of MPC 50 Bergamo, 20/06/2022 27 / 97



Serendipitous Design

Examination of the latter Figure suggests a heuristic argument as to why
the serendipitous control law may not be performing well in this case.
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Serendipitous Design

We can think, in this example, of x2(k) as "velocity" and x1(k) as
"position" of the mass.
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Serendipitous Design

Now, in our attempt to change the position rapidly (from −6 a 0), the
velocity has been allowed to grow to a relatively high level (+3). This
would be fine if the braking action were unconstrained.

Antonio Ferramosca Fundamentals of MPC 53 Bergamo, 20/06/2022 30 / 97



Serendipitous Design

However, our input (including braking) is limited to the range [−1 1].
Hence, the available braking is inadequate to "pull the system up", and
overshoot occurs.
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Serendipitous Design

Clearly, the problem with this strategy is that it does not know the
constraint (variable limits), and so it cannot anticipate (predict) future
saturations.
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Tactical Design

How could we remedy the problem?

A sensible idea would seem to be to try to "look ahead" and take account
of future input constraints (that is, the limited braking authority
available).

To test this idea, we take the objective function as a starting point.

But we now design a finite horizon constrained controller.
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Tactical Design

We use a prediction horizon N = 2 and minimize, at each sampling instant i and for the current
state x(i), the two-step objective function:

V2 (x (i) , u) =
1
2

i+1∑
k=i

(x(k)T Qx(k) + u(k)T Ru(k)) +
1
2

x(i + 2)T Px(i + 2)

subject to the equality and inequality constraints:

x(k + 1) = Ax(k) + Bu(k),

|u(k)| ≤ 1,

for k = i and k = i + 1.

In the objective function we set, as before, Q = CT C, R = 0.1.

The terminal state weighting matrix P is taken to be the solution of the Riccati equation
P = AT PA + Q − KT(R + BT PB)K, where K = (R + BT PB)−1BT PA is the corresponding gain
(state feedback).
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We use a prediction horizon N = 2 and minimize, at each sampling instant i and for the current
state x(i), the two-step objective function:

V2 (x (i) , u) =
1
2

i+1∑
k=i

(x(k)T Qx(k) + u(k)T Ru(k)) +
1
2

x(i + 2)T Px(i + 2)

subject to the equality and inequality constraints:

x(k + 1) = Ax(k) + Bu(k),

|u(k)| ≤ 1,

for k = i and k = i + 1.
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Tactical Design

As a result of minimizing the cost function subject to the constraints, we
obtain an optimal fixed-horizon control sequence {u(i), u(i + 1)}.

We then apply the resulting value of u(i) to the system. The state evolves
to x(i + 1); the time instant is shifted from i to i + 1, and the procedure is
repeated.

This is called receding horizon control [RHC] or model predictive
control.
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Tactical Design

The output trajectory with constrained input now has minimal overshoot
and fast response. Thus, the idea of "looking ahead" and applying the
constraints in a receding horizon fashion has apparently "paid dividends."
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Tactical Design

Figure: State space plot for the receding horizon tactical design and serendipitous design, respectively
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Conclusion about Constraints

One can often avoid constraints by lowering performance demands

However, this is at a cost

If we increase demands - constraints are met

Small violations not too significant

Large violations → poor performance

Rethink the problem - add constraints into the design

This leads to idea of Receding Horizon Control (Optimizing Control):
RHC can anticipate the presence of constraints thus achieving a better
control.
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Model Predictive Control
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Why Model Predictive Control?

Use a dynamical model of the process (including constraints)

x(k + 1) = f (x(k), u(k)), x(k) ∈ X , u(k) ∈ U

to predict its future evolution by choosing the best control sequence

u = {u(k), u(k + 1), ..., u(k + N − 1)}

that minimizes the performance index:

VN(x;u) =
N−1∑
j=0

(∥x(k + j)∥2
Q + ∥u(k + j)∥2

R)

Q ≥ 0, R > 0. Prediction horizon: N ≥ 1.
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Model Predictive Control

Open-loop solution: minimize the performance index with respect to the
control sequence u.
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Receding Horizon Principle

Open-loop solution:minimize the performance index with respect to the
control sequence u.
How do we close the loop? → Receding Horizon Principle

Definition (Receding Horizon Principle)
"at any time k solve the OCP over the prediction horizon [k,k+N] and apply
only the first input u0(k) of the optimal sequence u0(k). At time k+1, move the
prediction window one step ahead, and repeat the optimization over the
prediction horizon [k+1,k+N+1]"
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Receding Horizon

At time k, solve an optimal control problem (OCP) over a future horizon of N
steps

min
u

N−1∑
j=0

(∥x(j)− xsp∥2
Q + ∥u(j)− usp∥2

R)

s.t. x(0) = x(k)

x(j + 1) = f (x(j), u(j))

x(j) ∈ X , u(j) ∈ U , j ∈ I[0,N−1]

Apply the first control move u(k).

At time k + 1, get new measurement and solve the OCP. And so on...

MPC transforms open-loop control into closed-loop control.
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Receding Horizon Examples

Playing chess.

Driving.
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MPC with linear systems
Dynamical model of the form

x(k + 1) = Ax(k) + Bu(k), x(k) ∈ X , u(k) ∈ U

then the OCP

min
u

N−1∑
j=0

(∥x(j)− xsp∥2
Q + ∥u(j)− usp∥2

R)

s.t. x(0) = x(k), x(j + 1) = Ax(j) + Bu(j)

x(j) ∈ X , u(j) ∈ U , j ∈ I[0,N−1]

is a convex Quadratic Programming (QP) problem (Boyd &
Vandenberghe, 2006)

min
u

1
2

u′Hu + f ′u + r

s.t. Gu ≤ W
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Model Predictive Control

Widely used in the process industries Camacho & Bordons (2004)

Usually in its "original" Dynamic Matrix Control (DMC) formulation
(AspenTech, Honeywll, ABB).

Stability theory very mature(Mayne et al., 2000; Rawlings & Mayne, 2009):

Terminal equality constraint.

Terminal cost.

Terminal inequality constraint.

Terminal cost + Terminal inequality constraint.

Robust stability: ISS as a general framework (Limon et al., 2009).

Based on this, the optimal performance index can be considered as a
Lyapunov function
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MPC Stability
Some Definitions.
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Linear vector space

Linear vector space
A linear vector space, or simply vector space (real or complex) is a set X where two operations are defined
+ : X ×X → X , called sum, and • : R×X → X (or • : C×X → X ), called scalar product, such that
the following axioms are verified:

1 x + y = y + x, ∀x, y ∈ X (commutativity of the sum)
2 x + (y + z) = (y + x) + z, ∀x, y, z ∈ X (associativity of the sum)
3 there exists an element 0 ∈ X s. t. 0 + x = x + 0 = x, ∀x ∈ X (existence of the neutral element

w.r.t. the sum)
4 for all x ∈ X there exists an element −x ∈ X s. t. x + (−x) = 0 (existence of the inverse element

w.r.t. the sum)
5 for all r1, r2 ∈ R (c1, c2 ∈ C), and each x ∈ X , there exists an element r1 · (r2 · x) = (r1r2) · x

(c1 · (c2 · x) = (c1c2) · x)
6 for all r ∈ R (c ∈ C), and each x, y ∈ X , there exists an element r · (x + y) = r · x + r · y

(c · (x + y) = c · x + c · y)
7 for all r1, r2 ∈ R (c1, c2 ∈ C), and each x ∈ X , there exists an element

(r1 + r2) · x = r1 · x + r2 · x ((c1 + c2) · x = c1 · x + c2 · x)
8 for all x ∈ X , 1 · x = x.
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Normed vector space

The concept of distance between elements, is fundamental in order to add concept that we are interested in,
such as convergence and continuity. If we add such a concept, we can define the so called normed vector
spaces.

Normed vector space
A normed vector space is a couple X , ∥·∥, where X is a vector space and ∥·∥ : X → R is a real function,
called norm, such that:

1 ∥x∥ ≥ 0, for all x ∈ X ; ∥x∥ = 0 iff x = 0
2 ∥αx∥ = |α| ∥x∥, for all x ∈ X , and all α
3 ∥x + y∥ ≤ ∥x∥+ ∥y∥, for all x, y ∈ X (triangle inequality).

Remark
Note that the concept of norm in a normed vector space is a generalization of the concept of distance in R2

R3. Then, ∥x − y∥ can be seen as the distance between the two vectors or elements x and y. This concept
allows us to define the notions of convergence and proximity in a vector space.
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Examples of norm oeprators
In general a p-norm in Rn is defined as:

∥x∥p = p
√

|x1|p + |x2|p + ...+ |xn|p

1-norm
∥x∥1 = |x1|+ |x2|+ ...+ |xn|

2-norm (euclidean norm)

∥x∥2 =
√

|x1|2 + |x2|2 + ...+ |xn|2

∞-norm
∥x∥∞ = max(|x1|, |x2|, ..., |xn|) = max

i∈{1,2,...,n}
|xi|
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Convergence y continuity

We can now define the concepts of convergence and continuity in a vector space.

Convergence
Let {xn}∞1 be a sequence of elements belonging to a normed vector space (X , ∥·∥). We say that such a
sequence converges to the element x0 ∈ X if ∥xn − x0∥ → 0 for n → ∞.
That is, {xn}∞1 converges to x0 if, for all ϵ > 0, there exists and integer N(ϵ) such that

∥xn − x0∥ < ϵ, for all n ≥ N(ϵ).

Remark
We can give different interpretations to the previous definition:

{xn}∞1 → x0 iff the sequence {∥xn − x0∥}∞1 → 0.

Let B(x0, ϵ) = {x ∈ X : ∥x − x0∥ < ϵ}; then {xn}∞1 → x0 iff for all ϵ > 0, B(x0, ϵ) contains all
-but a finite number of - the elements of the sequence {xn}∞1 .
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Convergence y continuity

Continuity
Let

(
X , ∥·∥X

)
and

(
Y, ∥·∥Y

)
be two normed vector spaces. Let f : X → Y be a mapping from X to Y .

We state that f is continuous in x0 ∈ X if for all ϵ > 0 there exists a δ(ϵ, x0) > 0 such that

if ∥x0 − x∥X < δ(ϵ, x0), then ∥f (x0)− f (x)∥Y < ϵ.

f is continuous if it is continuous in all x ∈ X
f is uniformly continuous if it is continuous and for all ϵ > 0 there exists a δ(ϵ) > 0 such that

if ∥x0 − x∥X < δ(ϵ), then ∥f (x0)− f (x)∥Y < ϵ.

Remark
The difference between continuity and uniform continuity lies in the fact that in the second definition δ only
depends on ϵ and not on x.
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Continuous function

We want the distance between two points to be smaller then the error between images.
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Uniformly continuous function

Given the distance between two images, the distance between two points is always smaller than the error
between images, for all points.
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Counter example: continuous, but not uniformly, function

Function f (x) = 1
x is not uniformly continuous in [0,∞). It is however uniformly continuous in any

interval [a,∞), with a > 0.

Antonio Ferramosca Fundamentals of MPC 122Bergamo, 20/06/2022 55 / 97



Convergence y continuity
Very close to the previous concepts, there’s the concept of Lipschitz continuity.

Lipschitz continuity
Let

(
X , ∥·∥X

)
and

(
Y, ∥·∥Y

)
be two normed vector spaces. Let f be a mapping from X to Y . We state

that f is Lipschitz continuous in S ⊆ X if there exists a real constant L ≥ 0 such that

∥f (x1)− f (x2)∥Y ≤ L ∥x1 − x2∥X for all x1, x2 ∈ S.

Theorem
Lipschitz continuous function are uniformly continuous.

Remark
Let’s suppose that f : R → R. Due to the mean value theorem, if f is differentiable in [x1, x2], then

|f (x1)− f (x2)| ≤ f ′(c) |x1 − x2| for some c ∈ [x1, x2].

Therefore, if x1 y x2 belong to an interval S and f ′(c) ≤ L, for all c ∈ S, then it follows that f is Lipschitz
continuous.
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Compact sets

Closed set
A set S ∈ X is closed iff all converging sequences, with elements in S, have limit in S.

Remark
Different definitions (i) A closed set can be defined as a set which contains all its limit
points.
(ii) A set is closed if its complement is an open set.
(iii) Roughly speaking, a set is closed if it contains its boundary.

Bounded set
A set S ∈ X is bounded if it is in some sense of finite size.

Compact set
A set S ∈ X is compact if it is closed and bounded.
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A set S ∈ X is compact if it is closed and bounded.
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Compact sets

The interval A = (−∞,−2] is not compact because it is not bounded.

The interval C = (2, 4) is not compact because it is not closed.

The interval B = [0, 1] is compact because it is both bounded and closed.
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Cauchy sequence

A sequence {xn}∞1 in a normed vector space (X , ∥·∥) converges to x0 if ∥xn − x0∥ tends to zero when
n → ∞.

However, in many cases the limit point of a certain sequence is unknown. This is the case for instance, of
iterative solutions to differential equations.

We then need a different way to characterize a sequence, which does not depend on the (unknown) limit
point if such a sequence. We introduce the concept of Cauchy sequence.

Cauchy sequence
Let {xn}∞1 be a sequence of elements belonging to a normed vector space (X , ∥·∥). We say that such a
sequence is a Cauchy sequence if, for all ϵ > 0, there exists an integer N(ϵ) such that

∥xn − xm∥ < ϵ, for all n,m ≥ N(ϵ).

Remark
Based on the above definition, a sequence {xn}∞1 is convergent if its terms xn get arbitrarily closer to a
fixed element x0. On the other hand, it will be a Cauchy sequence if its terms get arbitrarily closer to each
other, when n → ∞.

Antonio Ferramosca Fundamentals of MPC 131Bergamo, 20/06/2022 59 / 97



Cauchy sequence

A sequence {xn}∞1 in a normed vector space (X , ∥·∥) converges to x0 if ∥xn − x0∥ tends to zero when
n → ∞.

However, in many cases the limit point of a certain sequence is unknown. This is the case for instance, of
iterative solutions to differential equations.

We then need a different way to characterize a sequence, which does not depend on the (unknown) limit
point if such a sequence. We introduce the concept of Cauchy sequence.

Cauchy sequence
Let {xn}∞1 be a sequence of elements belonging to a normed vector space (X , ∥·∥). We say that such a
sequence is a Cauchy sequence if, for all ϵ > 0, there exists an integer N(ϵ) such that

∥xn − xm∥ < ϵ, for all n,m ≥ N(ϵ).

Remark
Based on the above definition, a sequence {xn}∞1 is convergent if its terms xn get arbitrarily closer to a
fixed element x0. On the other hand, it will be a Cauchy sequence if its terms get arbitrarily closer to each
other, when n → ∞.

Antonio Ferramosca Fundamentals of MPC 132Bergamo, 20/06/2022 59 / 97



Cauchy sequence

A sequence {xn}∞1 in a normed vector space (X , ∥·∥) converges to x0 if ∥xn − x0∥ tends to zero when
n → ∞.

However, in many cases the limit point of a certain sequence is unknown. This is the case for instance, of
iterative solutions to differential equations.

We then need a different way to characterize a sequence, which does not depend on the (unknown) limit
point if such a sequence. We introduce the concept of Cauchy sequence.

Cauchy sequence
Let {xn}∞1 be a sequence of elements belonging to a normed vector space (X , ∥·∥). We say that such a
sequence is a Cauchy sequence if, for all ϵ > 0, there exists an integer N(ϵ) such that

∥xn − xm∥ < ϵ, for all n,m ≥ N(ϵ).

Remark
Based on the above definition, a sequence {xn}∞1 is convergent if its terms xn get arbitrarily closer to a
fixed element x0. On the other hand, it will be a Cauchy sequence if its terms get arbitrarily closer to each
other, when n → ∞.

Antonio Ferramosca Fundamentals of MPC 133Bergamo, 20/06/2022 59 / 97



Cauchy sequence

Proposition
Any convergent sequence in a norm vector space is a Cauchy sequence.

Remark
Although any convergent sequence in a norm vector space is a Cauchy sequence, the
inverse is in general not true: that is, not all Cauchy sequences are convergent.

However, some normed vector spaces enjoy the special property that any Cauchy
sequence in a norm vector space is a convergent sequence.

Banach space
A normed vector space (X , ∥·∥) is complete, or a Banach space, if any Cauchy
sequence converges, and converges to a un element of X .

The sets Rn y Cn, for all n ∈ N, are Banach spaces.
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Constrained Nonlinear System definitions

autonomous system (S), x+ = f (x), x ∈ X
autonomous linear system (SLin), x+ = Ax, x ∈ X ,

controlled system (CS), x+ = f (x, u), (x, u) ∈ Z ∆
= X × U ,

controlled linear system (CSLin), x+ = Ax + Bu, (x, u) ∈ Z ∆
= X × U ,

Closed-loop system (CLS), x+ = f (x, κ(x)), (x, κ(x)) ∈ Z
Closed-loop system (CLSLin), x+ = Ax + Bκ(x), (x, κ(x)) ∈ Z
X ∈ Rn closed and convex, and U ∈ Rm and compact (closed and
bounded) and convex.

We will denote the solution to (S), as ϕ(k; x), k ≥ 0, for an initial state
ϕ(0; x) = x, and the solution to (CS), as ϕ(k; x,u), k ≥ 0, for an initial
state ϕ(0; x,u) = x and an input sequence u = {u(0), · · · , u(k − 1)}.
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Equilibrium and Invariant Sets
Equilibrium Point
A point xs ∈ X is an equilibrium point of (S) if xs = f (xs).

Control Equilibrium Set
A set Ω ⊆ X is a Control Equilibrium Set of (CS) if for every point x ∈ Ω it follows
that x = f (x, u), for some u ∈ U.
A set Ω ⊆ X is a control equilibrium set for the closed-loop system (CLS) if for
every x ∈ Ω it follows that x = f (x, κ(x)) and κ(x) ∈ U .

Invariant Set
A set Ω ⊆ X is an invariant set for (S) if x ∈ Ω implies that f (x) ∈ Ω.

The closed set Ω = {xs} is a particular case of invariant set.

Control invariant Set
A set Ω ⊆ X is a Control Invariant Set for the controlled system (CS) if x ∈ Ω
implies that f (x, u) ∈ Ω for some u ∈ U .
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Invariant Set in R2
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Not invariant set in R2
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Attractivity and Stability

The following definitions are referred to systems (S) y (CS).

Local Stability
The (closed and invariant) set Ω is locally stable for (S) if, for all ϵ ≥ 0, there exists a
δ > 0 such that |x|Ω < δ implies |ϕ(i; x)|Ω < ϵ for all i ∈ I≥0.

Global Attractivity
The (closed and invariant) set Ω is globally attractive for (S) if, |ϕ(i; x)|Ω → 0 as
i → ∞, for all x ∈ Rn.

Global asymptotic stability (GAS)
The (closed and invariant) set Ω is globally asymptotically stable for (S) if it is
locally stable and globally attractive.

Antonio Ferramosca Fundamentals of MPC 150Bergamo, 20/06/2022 65 / 97



Attractivity and Stability

The following definitions are referred to systems (S) y (CS).

Local Stability
The (closed and invariant) set Ω is locally stable for (S) if, for all ϵ ≥ 0, there exists a
δ > 0 such that |x|Ω < δ implies |ϕ(i; x)|Ω < ϵ for all i ∈ I≥0.

Global Attractivity
The (closed and invariant) set Ω is globally attractive for (S) if, |ϕ(i; x)|Ω → 0 as
i → ∞, for all x ∈ Rn.

Global asymptotic stability (GAS)
The (closed and invariant) set Ω is globally asymptotically stable for (S) if it is
locally stable and globally attractive.

Antonio Ferramosca Fundamentals of MPC 151Bergamo, 20/06/2022 65 / 97



Attractivity and Stability

The following definitions are referred to systems (S) y (CS).

Local Stability
The (closed and invariant) set Ω is locally stable for (S) if, for all ϵ ≥ 0, there exists a
δ > 0 such that |x|Ω < δ implies |ϕ(i; x)|Ω < ϵ for all i ∈ I≥0.

Global Attractivity
The (closed and invariant) set Ω is globally attractive for (S) if, |ϕ(i; x)|Ω → 0 as
i → ∞, for all x ∈ Rn.

Global asymptotic stability (GAS)
The (closed and invariant) set Ω is globally asymptotically stable for (S) if it is
locally stable and globally attractive.

Antonio Ferramosca Fundamentals of MPC 152Bergamo, 20/06/2022 65 / 97



Attractivity and Stability

The following definitions are referred to systems (S) y (CS).

Local Stability
The (closed and invariant) set Ω is locally stable for (S) if, for all ϵ ≥ 0, there exists a
δ > 0 such that |x|Ω < δ implies |ϕ(i; x)|Ω < ϵ for all i ∈ I≥0.

Global Attractivity
The (closed and invariant) set Ω is globally attractive for (S) if, |ϕ(i; x)|Ω → 0 as
i → ∞, for all x ∈ Rn.

Global asymptotic stability (GAS)
The (closed and invariant) set Ω is globally asymptotically stable for (S) if it is
locally stable and globally attractive.

Antonio Ferramosca Fundamentals of MPC 153Bergamo, 20/06/2022 65 / 97



Stability at the origin
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Stability of an invariant set Ω
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Attractivity and Stability

In practice GAS cannot be achieved due to the constraints x ∈ X

Local Stability
The (closed and invariant) set Ω is locally stable for (S) if, for all ϵ ≥ 0, there exists a
δ > 0 such that |x|Ω < δ implies |ϕ(i; x)|Ω < ϵ for all i ∈ I≥0.

Attractivity
The (closed and invariant) set Ω is attractive for (S) if, |ϕ(i; x)|Ω → 0 as i → ∞, for
all x ∈ X .

Asymptotic stability (AS)
The (closed and invariant) set Ω is asymptotically stable for (S) if it is locally stable
and attractive.
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Lyapunov Stability Theory
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Lyapunov theory

Lyapunov theory is the mathematical extension of a physical observation: if a
physical system dissipates mechanical energy, then it eventually settles down to
an equilibrium point.

Consider the mass-spring-damper system

Dynamic equation
mẍ + cẋ + kx = 0
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mẍ + cẋ + kx = 0

Antonio Ferramosca Fundamentals of MPC 163Bergamo, 20/06/2022 70 / 97



Lyapunov theory

Total mechanical energy = kinetic energy + potential energy

V(x) =
1
2

mẋ2 +

∫ x

0
(kx)dx =

1
2

mẋ2 +
1
2

kx2

Zero energy corresponds to the equilibrium (x = 0, ẋ = 0).

Asymptotic stability implies that energy converges to zero.

Instability is related to the growth of mechanical energy.

Rate of energy during system’s motion:

V̇(x) = mẍẋ + kxẋ = (−cẋ)ẋ

= −cẋ2
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Lyapunov function

Rate of energy during system’s motion: V̇(x) = −cẋ2

c > 0 implies that the energy of the system is continuously dissipated by the
damper until the mass settles down (ẋ = 0): AS.

c = 0 implies that the energy of the system does not dissipate or grow. We have
harmonic oscillations: only stability for bounded initial conditions.

c < 0 implies that the energy of the system grows and the mass never settles
down: instability.

Finding an energy function with negative rate is a sufficient condition for AS.

This function is what we call a Lyapunov function.

In what follows we will make use of some support function in order to provide a
mathematical definition of Lyapunov function.
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c = 0 implies that the energy of the system does not dissipate or grow. We have
harmonic oscillations: only stability for bounded initial conditions.

c < 0 implies that the energy of the system grows and the mass never settles
down: instability.

Finding an energy function with negative rate is a sufficient condition for AS.

This function is what we call a Lyapunov function.

In what follows we will make use of some support function in order to provide a
mathematical definition of Lyapunov function.

Antonio Ferramosca Fundamentals of MPC 172Bergamo, 20/06/2022 72 / 97



Lyapunov function

Rate of energy during system’s motion: V̇(x) = −cẋ2

c > 0 implies that the energy of the system is continuously dissipated by the
damper until the mass settles down (ẋ = 0): AS.
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Support functions

Consider the following definitions:

Function K
A function α : R≥0 → R≥0 is a K-function if:

it is continuous.

it is strictly increasing, i.e., if a > b, then α(a) > α(b).

α(0) = 0.

A function α : R≥0 → R≥0 is a K∞-function if it is a K-function and

α(a) → ∞ when a → ∞ (unbounded).

A function β : R≥0 × I≥0 → R≥0 is a KL-function of:

the function β(a, k) is K in a for every fixed k ≥ 0.

the function β(a, k) is nonincreasing in k for every fixed a ≥ 0, in such a
way that β(a, k) → 0 for k → ∞.
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K and K∞-functions
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Example of K -function

Consider the function

α(r) = tan−1(r)

It is strictly increasing as

dα(r)
dr

=
1

(1 + r)2 > 0

α(0) = 0

limr→∞ α(r) = π
2

It’s a K -function.

0 5 10 15 20 25 30 35 40 45 50

r

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

(r
)

Antonio Ferramosca Fundamentals of MPC 177Bergamo, 20/06/2022 75 / 97



Example of K∞ -function

Consider the function

α(r) = rc

for any c > 0

It is strictly increasing as

dα(r)
dr

= crc−1 > 0

α(0) = 0

limr→∞ α(r) = ∞

It’s a K∞ -function.
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KL-function
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Example of KL -function
Consider the function

β(r, s) =
r

(krs + 1)
, k > 0

It is strictly increasing in r:

∂β(r, s)
∂r

=
1

(krs + 1)2 > 0

It is strictly decreasing in s:

∂β(r, s)
∂s

=
−kr2

(krs + 1)2 < 0

β(0, 0) = 0

β(r, s) → 0 as s → ∞

It’s a KL -function.
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Properties of K and K∞-functions

Properties of K and K∞-functions
Let α1(·) and α2(·) be K-functions (K∞-functions), then

α−1
i (·) defines the inverse function of αi(·) and it is defined in [0,R).

α−1
1 (·) and α1 ◦ α2(·) = α1(α2(·)) are K-functions (K∞-functions)

Even more, if α1(·) and α2(·) are K-functions and β(·, ·) is a
KL-function, then σ(r, s) = α1(β(α2(r), s)) is a KL-function

Positive definite function
A function V : Rnx → R≥0 is locally positive definite (PD) if it is continuous,
V(0) = 0 and V(x) > 0 for every x ̸= 0 in a neighborhood or the origin.
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Lyapunov Stability Theory

Definition (Lyapunov function)
A function V : Rnx → R≥0 is said to be a Lyapunov function for the system
x+ = f (x) and set Ω if there exist K∞-functions α1 y α2, and a PD function
α3, such that for any x ∈ Rnx,

V(x) ≥ α1(|x|Ω),
V(x) ≤ α2(|x|Ω),

V(f (x))− V(x) ≤ −α3(|x|Ω),
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Lyapunov function in R
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Lyapunov function in R2
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Lyapunov Stability Theory

The existence of a Lyapunov function is a sufficient condition for (global)
asymptotic stability as shown in the next result which can be proved under the
assumption, common in MPC, that α3(·) is K∞.

Theorem (Lyapunov function and GAS)

Suppose V(·) is a Lyapunov function for x+ = f (x) and set Ω, with α3(·) a
K∞-function. Then Ω is globally asymptotically stable.

A detailed proof can be found in (Rawlings & Mayne, 2009, Appendix B,
Theorem B.11, pag. 609)
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Proof (Stability):

Let ϵ > 0 be arbitrary and let δ ∆
= α−1

2 (α1(ϵ)).
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Proof (Stability):

Suppose x is the initial state, and |x|Ω < δ.
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Proof (Stability):

From the second condition, V(x) ≤ α2(|x|Ω), then V(x) ≤ α2(δ) = α1(ϵ).
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Proof (Stability):

From V(f (x))− V(x) ≤ −α3(|x|Ω), then {V(x(i)) : i ∈ I≥0}, with

x(i) ∆
= ϕ(i; x), is a nonincreasing sequence.
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Proof (Stability):

So, for all i ∈ I≥0 V(x(i)) ≤ V(x), where x is the initial state.
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Proof (Stability):

From V(x) ≥ α1(|x|Ω), then α1(|x(i)|Ω) ≤ V(x(i)) ≤ V(x). Recall that
V(x) ≤ α2(δ) = α1(ϵ).
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Proof (Stability):

Then |x(i)|Ω ≤ α−1
1 (V(x)) ≤ α−1

1 (α1(ϵ)) = ϵ, for any |x|Ω ≤ δ
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Proof (Attractivity/Convergence):

Let x ∈ Rnx be arbitrary. From the second Lyapunov function condition
V(x) is finite, and from the first and third condition, {V(x(i)) : i ∈ I≥0},

with x(i) ∆
= ϕ(i; x), is nonincreasing and bounded from below by zero.
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Proof (Attractivity/Convergence):

Hence both, V(x(i)) and V(x(i + 1)) converge to a V̄ ≥ 0, as i → ∞
(prop. of real sequences).
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Proof (Attractivity/Convergence):

Since [V(x(i + 1))− V(x(i))] → 0 as i → ∞ and x(i + 1) = f (x(i)) then
from the third condition α3(|x(i)|Ω) → 0 as i → ∞.
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Proof (Attractivity/Convergence):

Since |x(i)|Ω = α−1
3 (α3(|x(i)|Ω)), where α−1

3 is a K∞-function, then
|x(i)|Ω → 0 as i → ∞.

Antonio Ferramosca Fundamentals of MPC 199Bergamo, 20/06/2022 94 / 97



Stable MPC

We use Lyapunov stability theory.

The objective is then to find a Lyapunov function V(·) for the
closed-loop system under MPC, x+ = f (x, κN(x)).

Standard method to ensure stability: use of the optimal cost function as
a candidate Lyapunov function.

We need to chose appropriately the ingredients of the controller: stage
cost, terminal constraint, terminal cost.

V0
N(x) = min

u

N−1∑
j=0

ℓ(x(j), u(j))

s.t. x(0) = x, x(j + 1) = f (x(j), u(j))

x(j) ∈ X , u(j) ∈ U , j ∈ I[0,N−1]

x(N) = 0
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The objective is then to find a Lyapunov function V(·) for the
closed-loop system under MPC, x+ = f (x, κN(x)).

Standard method to ensure stability: use of the optimal cost function as
a candidate Lyapunov function.

We need to chose appropriately the ingredients of the controller: stage
cost, terminal constraint, terminal cost.

V0
N(x) = min

u

N−1∑
j=0

ℓ(x(j), u(j)) + Vf (x(N))

s.t. x(0) = x, x(j + 1) = f (x(j), u(j))

x(j) ∈ X , u(j) ∈ U , j ∈ I[0,N−1]

x(N) ∈ Xf
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