

UNIVERSITÀ DEGLI STUDI DI BERGAMO

Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione

DATA SCIENCE AND AUTOMATION

Lecture 1: Introduction to data science

Master degree in MECHATRONICS AND SMART TECHNOLOGY ENGINEERING

speaker Prof. Mirko Mazzoleni

PLACE University of Bergamo

Syllabus

1. Introduction to data science

1.1 The business perspective

1.2 Data analysis processes

- 2. Data visualization
- 3. Maximum Likelihood Estimation
- 4. Linear regression
- 5. Logistic regression
- 6. Bias-Variance tradeoff
- 7. Overfitting and regularization
- 8. Validation and performance metrics
- 9. Decision trees

10. Neural networks

11. Machine vision

11.1 Classic approaches

11.2 CNN and deep learning

12. Unsupervised learning

12.1 k-means and hierarchical clustering

12.2 Principal Component Analysis

13. Fault diagnosis

13.1 Model-based fault diagnosis

13.2 Signal-based fault diagnosis

13.3 Data-driven fault diagnosis

Outline

- 1. The data-driven company
- 2. Data types and usage
- 3. What we are going to do with data
- 4. From business problems to data-driven tasks
- 5. Supervised and unsupervised problems
- 6. Data science and machine learning processes

Outline

1. The data-driven company

- 2. Data types and usage
- 3. What we are going to do with data
- 4. From business problems to data-driven tasks
- 5. Supervised and unsupervised problems
- 6. Data science and machine learning processes

«Data is the new oil»

A

UNIVERSITÀ DEGLI STUDI DI BERGAMO

UNIVERSITÀ DEGLI STUDI DI BERGAMO DI BERGAMO DI BERGAMO

Example in real life: football player

Scenario

29 years old football player with contract expiring soon

Aim

Maximize own performance and profit

À | Dipartimento
Di di Ingegneria Gestionale,
O dell'Informazione e della Produzione

- What is the **best** football team **for me**?
- Since I do not score so many goals, how can I prove my importance in the game?
- How would the current team have performed without me, or with some «competitor» in my place?

A Dipartimento
Di di Ingegneria Gestionale,
D dell'Informazione e della Produzione

«Data-driven» football player

À | Dipartimento
Di | di Ingegneria Gestionale,
O | dell'Informazione e della Produzione

«Data-driven» football player

Data science team

À Dipartimento
DI di Ingegneria Gestionale,
dell'Informazione e della Produzione

Data is the new oil and data science is «sexy»

Data science has been deemed as the **sexiest job** of the 21th century

- Virtually every aspect of business is now open to **data collection** (operations, manufacturing, supply-chain management, customer behaviour, marketing campaigns)
- Collected information need to be **analyzed properly** in order to get **actionable results**
- A huge amount of data requires **specific infrastructures** to be handled
- A huge amount of data requires **computational power** to be analyzed
- We can let computers perform decisions given **previous examples**
- Rising of **specific job** titles

Data-driven company

Data-driven decision-making (DDD) refers to the practice of basing **decisions on the analysis of data**, rather than purely on intuition [1, 2]

- Some decisions can be made **automatically** (finance, recommendations)
- **Data engineering and processing** is a fundamental support to industrial analytics
- Data, and the capability to extract useful knowledge from data, should be regarded as key strategic asset
 - ✓ Need to invest to acquire the right data (even lose money)
 - ✓ Understand data science even if you will not do it

Picture taken from [1]: Provost, Foster, and Tom Fawcett. "Data Science for Business: What you need to know about data mining and data-analytic thinking". O'Reilly Media, Inc., 2013

Anti-hippo culture

Let data drive decisions, not the <u>Highest Paid Person's Opinion</u>.

A Dipartimento
I di Ingegneria Gestionale,
O dell'Informazione e della Produzione

Hippos are among the most dangerous animals in Africa. Conference rooms too. —Jonathan Rosenberg

The road to become data-driven

Why become data-driven?

Data Driven companies are

5% more productive [2]

1\$ invested in analytics pays back 13 \$ [3]

IDIPartimento
IDI di Ingegneria Gestionale,
dell'Informazione e della Produzione

Why become data-driven?

Business value created by Artificial Intelligence up to 2030 [4] \$13 Trillions

Retail	\$0,8T
Travels	\$480B
Logistics	\$475B
Automotive & assembly	\$405B
Materials	\$300B
Advanced electronics & semiconductors	\$291B
Healthcare systems & services	\$267B
High tech	\$267B
Telecom	\$174B
Oil & gas	\$173B
Agriculture	\$164B

It is **difficult** to find an industrial sector **that will not benefit** from AI in the near future

Outline

1. The data-driven company

2. Data types and usage

- 3. What we are going to do with data
- 4. From business problems to data-driven tasks
- 5. Supervised and unsupervised problems
- 6. Data science and machine learning processes

Data types

Data can have different formats. The most typical is that of a **table** (tabular data)

House area(feet ²)	# bedrooms	Price (1000\$)
523	1	115
645	1	150
708	2	210
1034	3	280
2290	4	355
2545	4	440

Data are dirty

Garbage IN, garbage OUT

Data problems:

- Missing values
- Not correct values

Different data types

Images, audio, text

_	House area(feet ²)	# bedrooms	Price (1000\$)
	523	1	115
	645	1	0,001
	708	unknown	210
	1034	3	unknown
	unknown	4	355
	2545	unknown	440
		1	
ot stru	ctured data	a Structured data	

Organizing data

It is important to specify your **acceptance criteria**: when is our ML system good?

Organizing data

Issues that <u>your source</u> should solve

- Values are missing
- Zeros replace missing values
- Data are missing where you know should be there
- Rows or values are duplicated
- Spelling is incosistent
- Date fromats are incosistent
- Units are not specified
- Categories are badly chosen
- Field names are ambiguous
- Provenance is not documented

- Suspicious values are present
- Data are too coarse
- Totals differs from published aggregates
- Spreadsheet has 65536 rows
- Spreadsheet has dates in 1900, 1904, 1969 or 1970
- Text has been converted to numbers
- Numbers have been stored as text

Issues that <u>you</u> should solve

- Text is garbled
- Line endings are garbled
- Data are in a PDF
- Data are too granular
- Data were entered by humans
- Data are intermingled with formatting and annotations
- Aggregations were computed on missing values
- Sample is not random
- Margin-of-error is too large

- Margin-of-error is unknown
- Sample is biased
- Data have been manually edited
- Inflation skews the data
- Natural\seasonal variation skews the data
- Timeframe has been manipulated

Issues that <u>a third-party expert</u> should help you solve

- Author is untrustworthy
- Collection process is opaque
- Data assert unrealistic precision
- There are inexplainable outliers
- An index masks underlying variation
- Results have been p-hacked
- Benford's law fails (an observation that in many real-life sets of numerical data, the leading digit is likely to be small)
- Too good to be true

Issues that <u>a programmer</u> should help you solve

- Data are aggregated to the wrong categories or geographies
- Data are in scanned documents

A Dipartimento
Di di Ingegneria Gestionale,
O dell'Informazione e della Produzione

Outline

- 1. The data-driven company
- 2. Data types and usage

3. What we are going to do with data

- 4. From business problems to data-driven tasks
- 5. Supervised and unsupervised problems
- 6. Data science and machine learning processes

Data usages

With data we can perform several analyses, such as:

- Descriptive analysis
- Model learning
- Visualization

In this course we will see all these aspects

Descriptive analysis

Descriptive analysis consists mainly in:

- **Summarize the data** (usually tabular data) and compute quantities such as averages, standard deviations
- Check for missing values, and try to understand why they are missing
- Visualize the data using different plot types, colors and formats
- **Counting** how many data satisfy a certain condition
- Answer, and provide a way to generate, questions about the data

Statistical Modeling: The Two Cultures

Modeling entails estimating models (functions) of the natural data-generating systems [6]

There are two goals in analyzing the data with a model:

- **1. Information:** to extract some information about how nature is associating the response variables to the input variables **«Statistical approach»**
- 2. Prediction: to be able to predict what the responses are going to be given future input variables «Machine learning approach»

Statistical Modeling: The Two Cultures

There are two different approaches toward these goals:

- 1. The **«statistical approach»:** the focus is to get an interpretable model that relies on data and model assumptions
- 2. The **«machine learning approach»:** the focus is on prediction performance rather than interpretation. Assumptions on data and their distribution are less important

In this course we will cover both approaches

Model learning

Model learning consists in **estimating a model** from data. Consider the following data:

House area(feet ²)	# bedrooms	Price (1000\$)	• AIM: predict house prices
523	1	115	
645	1	150	Regression
708	2	210	
1034	3	280	 The data can come from a
2290	4	355	databasa ar from asy. Excel filos
2545	4	440	
X		y →	Learn the relation from House area to Price
X		y →	Learn the relation from House area AND #bedrooms to Price

Model learning

Another type of data can be an **image**

Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione

Machine learning (ML) vs. data science

House area (feet ²)	# bedrooms	# bathroom	s Recently renowed	Price (1000\$)		
523	1	2	No	115		
645	1	3	No	150		
708	2	1	No	210		
1034	3	3	Si	280		
2290	4	4	No	355		
2545	4	5	Si	440		
Machine learning		X Data	science	y		
• Predict y given X	Output: Co	de and + Hou	 Houses with 3 bathrooms are more expensive than those with 2 bathrooms of the same size 			
 Running software (web site\ mobile app) 	program	Rec hou	 Recently renovated Output: Slide deck houses cost 15% more 			

ML, data science, AI and dynamical systems

Outline

- 1. The data-driven company
- 2. Data types and usage
- 3. What we are going to do with data

4. From business problems to data-driven tasks

- 5. Supervised and unsupervised problems
- 6. Data science and machine learning processes

Business problems as data-driven tasks

Each data-driven project is **unique**. The aim is to **decompose** the business problem into subtasks for which a **common approach** exists

There are many data science algorithms. However, they address a **handful** of tasks:

- Classification and class probability estimation
- Regression
- Symilarity matching
- Clustering
- Co-occurrence grouping

- Profiling
- Link prediction
- Data reduction
- Causal modeling

Business problems as data-driven tasks

- Spam e-mail detection system Classification
- Credit approval Classification
- Recognize objects in images Classification •
- Find the relation between house prices and house sizes Regression
- Predict the stock market Regression

- Market segmentation Clustering •
- Co-occurence Market basket analysis grouping
- Language models (word2vec) Similarity matching
- Link Social network analysis prediction Data reduction
- Low-order data representations ٠
- Similaritiy Movies recommendation •

matching

Focus on data science and machine learning projects that are **valuable** and **feasible**

Think about automating **tasks** rather than automating **jobs**

What are the main **drivers** of the business values?

What are the main **pain points** in your business?

MANUFACTURING LINE MANAGER

Data science

Machine learning

Automatic visual inspection

ullet

Optimize production yield

RECRUITING

• Optimize recruiting process

• Automatic resume screening

MARKETING

Machine learning

• A \ B testing websites

• Recommendations

Outline

- 1. The data-driven company
- 2. Data types and usage
- 3. What we are going to do with data
- 4. From business problems to data-driven tasks

5. Supervised and unsupervised problems

6. Data science and machine learning processes

Dipartimento
 di Ingegneria Gestionale,
 dell'Informazione e della Produzione

Supervised vs unsupervised methods

A specific data science task can be tackled via a **supervised** or **unsupervised** approach

Unsupervised

«Do our customers naturally fall into different groups?»

There is not a specific purpose for the grouping. The aim is only to find **similarities** between individuals

Supervised

«Can we find groups of customers who have particularly high likelihoods of canceling

their service soon after their contracts expire? »

There is a specific purpose: find people who will leave when contract expires. In this case, **there must be** data on the **target**. The value of the target for an individual is called **label** or **class**. We need a dataset of people that **we know they left (labeled dataset)**

Supervised vs unsupervised methods

Supervised vs unsupervised methods

Supervised

Unsupervised

- Spam e-mail detection system
- Credit approval
- Recognize objects in images
- Find the relation between house prices and house sizes
- Predict the stock market

- Market segmentation
- Market basket analysis
- Language models (word2vec)
- Social network analysis
- Low-order data representations
- Movies recommendation

Supervised or unsupervised

Components of learning (in general)

- Input: x (e-mail textual content) \rightarrow each dimension is some e-mail attribute
- Output: $y (\text{spam / not spam?}) \rightarrow \text{the decision that we have to take in the end}$
- Target function: $f: \mathcal{X} \to \mathcal{Y}$ (Ideal spam filter formula) \to unknown, we have to learn it
- Data: $\mathcal{D} = \{(x(1), y(1)), \dots, (x(N), y(N))\}$ (historical records of e-mail examples)
 - ✓ Each feature vector x consists of different regressors or features, i.e. information used to predict the output variable
- Hypothesis: $g: \mathcal{X} \to \mathcal{Y}, g \in \mathcal{H}$ (formula to be used) $\to g$ is an **approximation** of f

 \mathcal{H} is called the **Hypothesis space**. This, together with the **Learning algorithm**, forms the **learning model** [5]

Supervised learning

• The «correct answer» (output label) y is given

• Predict y from a set of inputs $x \in \mathbb{R}^{d \times 1}$

- **Regression:** predict a continuous output $y \in \mathbb{R}$ (real value)
- **Classification:** predict a discrete categorical output $y \in \{1, 2, ..., C\}$ (class)

Example: house prices regression

Single feature x₃

Suppose we want to find a linear function which relates the **measured** regressors x_1, x_2, x_3, x_4 with the **observed** output y

							output
	Size [fe	$eet^2]$	Number of bedrooms	Number of floors	Age of home [year]	Price [\$]	variable y
	210)4	5	1	45	$4.60 \cdot 10^{5}$	5
s N	141	.6	3	2	40	$2.32\cdot 10^8$	5
er c ion	153	3 4	2	1	30	$3.15\cdot 10^8$	5
mb(rvat	÷		:	:	:	· · · ·	_ .
NU	\downarrow		\downarrow	\downarrow	\downarrow	\downarrow	Single obsevation
oţ	x_1	L	x_2	x_3	x_4	y	(feature vector) x

- The number of rows is the number of data points (also known as number of observations) N
- The *i*-th observation is the vector $\mathbf{x}(i) = [x_1(i) \ x_2(i) \ x_3(i) \ x_4(i)]^{\top} \in \mathbb{R}^{4x_1}$
- Each feature vector x has associated a response $y \in \mathbb{R}$ that we want to predict for new observations x^*

Output

Example: house prices classification

The components of the features vector are the same. The difference lies in the response variable, which now is a **class** (categorical data type) and not a real value

Suppose that instead of the price value in dollars, we want to classify houses as **expensive** (class y = 1) or **cheap** (class y = 0)

Size $[feet^2]$	Number of bedrooms	Number of floors	Age of home $[year]$	Price [class]
2104	5	1	45	1
1416	3	2	40	0
1534	2	1	30	1
÷	:	:	:	:
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
x_1	x_2	x_3	x_4	y

The point x is classified to class y = 1 if the probability of x to belong to class 1 is ≥ 0.5

Supervised learning: problem statement

The aim is to **learn an unknown function** f given a dataset \mathcal{D}

- The function is searched in the hypothesis space \mathcal{H} , where $h \in \mathcal{H}$ is a specific function
- We want to find a function h that approximates f well, on the **whole domain** \mathcal{X}

What does $h \approx f$ mean?

• We need to define a **measure of error** or **cost (loss) function**

Supervised learning: problem statement

Pointwise error measures

Pointwise error measures $\ell(x; \theta)$ are based on a single point x. Examples are:

• Quadratic error:
$$\ell(f(x), h(x; \theta)) = (f(x) - h(x; \theta))^2 \rightarrow \text{used for regression}$$

• **Binary error:** $\ell(f(\mathbf{x}), h(\mathbf{x}; \boldsymbol{\theta})) = \mathbb{I}\{f(\mathbf{x}) \neq h(\mathbf{x}; \boldsymbol{\theta})\} \rightarrow \text{used for classification}$

A Dipartimento
 DI di Ingegneria Gestionale,
 I dell'Informazione e della Produzione

Supervised learning: problem statement

<u>Global error measures</u>

These error measures take into account all *N* observations. It is important to distinguish between **in-sample error** (train error) and **out-of-sample error** (validation or test error).

In-sample error

Error that the model makes on the observed N data available, which were used to estimate it

$$E_{\rm in}(h(\boldsymbol{\theta})) \equiv J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} \ell(f(\boldsymbol{x}), h(\boldsymbol{x}; \boldsymbol{\theta}))$$

Out-of-sample error

Error that the model makes on the entire domain of *f* (therefore also **data that I have not observed**)

$$E_{\text{out}}(h(\boldsymbol{\theta})) = \mathbb{E}_{\boldsymbol{x}}[\ell(f(\boldsymbol{x}), h(\boldsymbol{x}; \boldsymbol{\theta}))]$$

Unsupervised learning

- Instead of (input, output) we get (input, ?)
- Here there is no a function *f* to learn
- Find properties of the inputs $x \in \mathbb{R}^{d \times 1}$
- High-level representation of the input
- Elements in the same cluster have similar properties

Reinforcement learning

- Instead of (input, output) we get (input, output, reward)
- The algorithm tries to learn what action to take, in order to maximize the reward
- This is called a policy
- Applications in control, robotics, A/B testing

Business problems as data science examples - revisited

Supervised

Unsupervised

- Spam e-mail detection system Classification
- Credit approval Classification
- Recognize objects in images **Classification**
- Find the relation between house prices and house sizes Regression
- Predict the stock market Regression

- Market segmentation **Clustering**
- Market basket analysis arouping
- Language models (word2vec) **Similarity matching**

Link

Social network analysis prediction

Data reduction

Low-order data representations

Movies recommendation

Similari matchin

Supervised or unsupervised

Outline

- 1. The data-driven company
- 2. Data types and usage
- 3. From business problems to data-driven tasks
- 4. Supervised and unsupervised problems

5. Data science and machine learning processes

CRISP-DM process

Cross Industry Standard Process for Data Mining (CRISP-DM) <u>https://mineracaodedados.files.wordpress.com/2012/04/the-crisp-</u> <u>dm-model-the-new-blueprint-for-data-mining-shearer-colin.pdf</u>

Iteration is the rule rather the exception:

- Business understanding
- Data understanding
- Data preparation
- Modeling
- Evaluation
- Deployment

CRISP-DM: Business understanding

Cast the business problems into one or more data science problems

- 1. Classification
- Regression 2.
- Probability estimation 3.
- Similarity matching 4.
- Clustering 5.
- Profiling 6.
- Link prediction 7.
- Data reduction 8.
- Causal modeling 9.

What exactly do we want to do?

What parts of this use scenario constitute possible **data**

How exactly would we do it?

DI BERGAMO

rmazione e della Produzione

CRISP-DM: Data understanding

Identify the available and needed data

Costs/benefits of acquiring each source of data

Are the data at disposal **related to the business** problem?

Can we use a **proxy** for data that we can not have?

As data understanding progresses, the **solution paths** may differ

CRISP-DM: Data preparation

Clean and prepare data for use with algorithms

Usually, the algorithms we employ require **data in a different format** with respect to the available one

• Convert string to numbers, infer missing data, import data from excel files, ...

Data preprocessing/cleaning/labeling (most of data science project time is spent here) [5]

Pay attention to not use historical data that **will not be available** when your model will be used

CRISP-DM: Modeling

Estimate a mathematical model to extract pattern from data

In most cases, standard algorithms can be directly applied on data

The aim is to find a model that performs well **on unseen data**

The type of the model has to be chosen based on:

- What data mining **task** we want to solve
- Performance measures
- Availability of **libraries** for deployement

CRISP-DM: Evaluation

Assess the validity of the results

We could find patterns that exist only in the particular dataset that we have at disposal **(overfitting)**

The devised solution and the model's decisions should be **comprehensible** by the stakeholders

Usually evaluation is performed **before deploying**. In this case, build environments that **closely mimic** the real use scenario

72 /76

CRISP-DM: Deployment

Put the model (or the data mining steps) into production

Usually requires to **re-code** the model, to make it compatible with the existing technology

This step can require a quite **investment in time**. Usually the data science team builds a prototype that is then passed to the development team

For this reason, it is suggested to **involve a member of the development team** in the early phases of the data science project

Deployment can involve not only the final model, but also **previous phases** (data collection, model building, evaluation)

Epicyclic of data analysis

- 1. Stating the question
- 2. Exploratory data analysis
- 3. Model building
- 4. Interpretation
- 5. Communication

Workflow of a machine learning project

Workflow of a data science project

References

- 1. Provost, Foster, and Tom Fawcett. "*Data Science for Business: What you need to know about data mining and data-analytic thinking*". O'Reilly Media, Inc., 2013.
- 2. Brynjolfsson, E., Hitt, L. M., and Kim, H. H. *"Strength in numbers: How does data driven decision making affect firm performance?"* Tech. rep., available at SSRN: <u>http://ssrn.com/abstract=1819486</u>, 2011
- 3. Nucleus Research. 2014. <u>http://bit.ly/XQFDbv</u>
- 4. <u>Notes from the AI frontier: Modeling the impact of AI on the world economy</u>, 2018.
- 5. Pyle, D. "*Data Preparation for Data Mining*". Morgan Kaufmann, 1999.
- 6. Leo Breiman, "Statistical Modeling: The Two Cultures", Statistical Science, vol. 16. no. 3, 2001

UNIVERSITÀ DEGLI STUDI DI BERGAMO

Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzion