
Lesson 9.

Neural networks
TEACHER

Mirko Mazzoleni

PLACE

University of Bergamo

DATA SCIENCE AND 
AUTOMATION COURSE

MASTER DEGREE SMART 
TECHNOLOGY ENGINEERING



/39

1. Neural networks: basic concepts

2. Neural networks: learning

3. Tips & tricks

4. Deep learning

Outline

2



/39

1. Neural networks: basic concepts

2. Neural networks: learning

3. Tips & tricks

4. Deep learning

Outline

3



/394

Nonlinear hypothesis

Linear methods can be used to learn nonlinear function

• the important thing is that the model is linear in the parameters

x1

x2

Logistic regression

ℎ𝜽 𝒙 = 𝑠 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + 𝜃3𝑥1𝑥2 + 𝜃4𝑥1
2𝑥2 + 𝜃5𝑥1

3𝑥2 +⋯

• Logistic regression in OK if we have a 2-dim feature space
𝑥1, 𝑥2 , so 𝑞 = 𝑑 − 1 = 2. We can compute all the quadratic terms

𝑂 𝑞2 ≈
𝑞2

2

• If we have 100 features, we end up with about ≈ 5000 features

• This is not a good way to learn nonlinear functions



/395

Neural networks
A Neural Network (NN) is a nonlinear model

• NN originate from trying to mimic the

brain

• Very widely used in 80s and 90s, then

their popularity diminished in late 90s

• Today they are state-of-the-art

technique for many applications (vision,

audio, text)

• If a neuron wants to send a message, it sends

an electric impulse to other neurons

• Which, in turn, do some computation with the

received input to send its messages

Input «wires»
Output «wires»



/396

Neural networks

Neuron model: logistic unit
𝒙 =

𝑥0
𝑥1
𝑥2
𝑥3

𝜽 =

𝜃0
𝜃1
𝜃2
𝜃3

𝑥1

𝑥2

𝑥3

𝑥0
Bias unit 𝑥0 = 1

ℎ𝜽 ⋅

Inputs

Output

Activation function

ℎ𝜽 𝒙 = 𝑠 𝒙𝑇𝜽 =
1

1 + 𝑒−𝒙
𝑇𝜽

= 𝑎

𝜃0

𝜃1

𝜃2

𝜃3

𝑎

𝑎: activation 



/397

Neural networks
Neural networks can be seen as combination of logistic units

Layer 1 Layer 2 Layer 3

𝑥0 𝑎0
2

𝑥1

𝑥2

𝑥3

𝑎1
(2)

𝑎2
(2)

𝑎3
(2)

Input layer Hidden layer Output layer

• Values in the hidden layer are not

observed in the training set

• The network computes its own

features

Bias units

ℎΘ(𝒙)

ℎΘ 𝒙 = 𝑠 𝜃0𝑎0
2
+ 𝜃1𝑎1

2
+ 𝜃2𝑎2

2
+ 𝜃3𝑎3

2

• It is like logistic regression, but it
uses 𝑎0

2
, … , 𝑎3

2 instead of 𝑥0, … , 𝑥3

𝑥0 = 𝑎0
1
= 1, 𝑎0

2
= 1



/398

Neural networks

𝑥0

𝑥1

𝑥2

𝑥3

𝑎1
(2)

𝑎2
(2)

𝑎3
(2)

ℎΘ(𝒙)

If network has 𝑤𝑙 units in layer 𝑙, 𝑤𝑙+1 units in layer 𝑙 + 1, then Θ 𝑗 will be of dimension 𝑤𝑙+1 × 𝑤𝑙 + 1

3 units
(do not consider

bias units)

In our example: Θ 1 ∈ ℝ3×4 and Θ 2 ∈ ℝ1×4

𝑎1
2
= 𝑠 Θ10

1
𝑥0 + Θ11

1
𝑥1 + Θ12

1
𝑥2 + Θ13

1
𝑥3

𝑎2
2
= 𝑠 Θ20

1
𝑥0 + Θ21

1
𝑥1 + Θ22

1
𝑥2 + Θ23

1
𝑥3

𝑎3
2
= 𝑠 Θ30

1
𝑥0 + Θ31

1
𝑥1 + Θ32

1
𝑥2 + Θ33

1
𝑥3

ℎΘ 𝒙 = 𝑎1
3
= 𝑠 Θ10

2
𝑎0

2
+ Θ11

2
𝑎1

2
+ Θ12

2
𝑎2

2
+ Θ13

2
𝑎3

2

Layer 𝟏
From node 0
To node 1

𝑎0
2

3 units
(do not consider

bias units)

“activation” of unit 𝑖 in layer 𝑙

matrix of weights controlling function 

mapping from layer 𝑙 to layer 𝑙 + 1

𝑎𝑖
𝑙
=

Θ 𝑙 =



/399

Neural networks

𝑥0

𝑥1

𝑥2

𝑥3

𝑎1
(2)

𝑎2
(2)

𝑎3
(2)

ℎΘ(𝒙) 𝑎1
2
= 𝑠 Θ10

1
𝑥0 + Θ11

1
𝑥1 + Θ12

1
𝑥2 + Θ13

1
𝑥3

𝑎2
2
= 𝑠 Θ20

1
𝑥0 + Θ21

1
𝑥1 + Θ22

1
𝑥2 + Θ23

1
𝑥3

𝑎3
2
= 𝑠 Θ30

1
𝑥0 + Θ31

1
𝑥1 + Θ32

1
𝑥2 + Θ33

1
𝑥3

ℎΘ 𝒙 = 𝑎1
3
= 𝑠 Θ10

2
𝑎0

2
+ Θ11

2
𝑎1

2
+ Θ12

2
𝑎2

2
+ Θ13

2
𝑎3

2

𝑎0
2

3 units
(do not consider

bias units)

3 units
(do not consider

bias units)

If network has 𝑤𝑙 units in layer 𝑙, 𝑤𝑙+1 units in layer 𝑙 + 1, then Θ 𝑗 will be of dimension 𝑤𝑙+1 × 𝑤𝑙 + 1

In our example: Θ 1 ∈ ℝ3×4 and Θ 2 ∈ ℝ1×4

“activation” of unit 𝑖 in layer 𝑙

matrix of weights controlling function 

mapping from layer 𝑙 to layer 𝑙 + 1

𝑎𝑖
𝑙
=

Θ 𝑙 =



/3910

Neural networks

𝑥0

𝑥1

𝑥2

𝑥3

𝑎1
(2)

𝑎2
(2)

𝑎3
(2)

ℎΘ(𝒙) 𝑎1
2
= 𝑠 Θ10

1
𝑥0 + Θ11

1
𝑥1 + Θ12

1
𝑥2 + Θ13

1
𝑥3

𝑎2
2
= 𝑠 Θ20

1
𝑥0 + Θ21

1
𝑥1 + Θ22

1
𝑥2 + Θ23

1
𝑥3

𝑎3
2
= 𝑠 Θ30

1
𝑥0 + Θ31

1
𝑥1 + Θ32

1
𝑥2 + Θ33

1
𝑥3

ℎΘ 𝒙 = 𝑎1
3
= 𝑠 Θ10

2
𝑎0

2
+ Θ11

2
𝑎1

2
+ Θ12

2
𝑎2

2
+ Θ13

2
𝑎3

2

𝑎0
2

3 units
(do not consider

bias units)

3 units
(do not consider

bias units)

If network has 𝑤𝑙 units in layer 𝑙, 𝑤𝑙+1 units in layer 𝑙 + 1, then Θ 𝑗 will be of dimension 𝑤𝑙+1 × 𝑤𝑙 + 1

In our example: Θ 1 ∈ ℝ3×4 and Θ 2 ∈ ℝ1×4

“activation” of unit 𝑖 in layer 𝑙

matrix of weights controlling function 

mapping from layer 𝑙 to layer 𝑙 + 1

𝑎𝑖
𝑙
=

Θ 𝑙 =



/3911

Neural networks

𝑥0 𝑎0
2

𝑥1

𝑥2

𝑥3

𝑎1
(2)

𝑎2
(2)

𝑎3
(2)

ℎΘ(𝒙) 𝑎1
2
= 𝑠 Θ10

1
𝑥0 + Θ11

1
𝑥1 + Θ12

1
𝑥2 + Θ13

1
𝑥3

𝑎2
2
= 𝑠 Θ20

1
𝑥0 + Θ21

1
𝑥1 + Θ22

1
𝑥2 + Θ23

1
𝑥3

𝑎3
2
= 𝑠 Θ30

1
𝑥0 + Θ31

1
𝑥1 + Θ32

1
𝑥2 + Θ33

1
𝑥3

ℎΘ 𝒙 = 𝑎1
3
= 𝑠 Θ10

2
𝑎0

2
+ Θ11

2
𝑎1

2
+ Θ12

2
𝑎2

2
+ Θ13

2
𝑎3

2

3 units
(do not consider

bias units)

3 units
(do not consider

bias units)

If network has 𝑤𝑙 units in layer 𝑙, 𝑤𝑙+1 units in layer 𝑙 + 1, then Θ 𝑗 will be of dimension 𝑤𝑙+1 × 𝑤𝑙 + 1

In our example: Θ 1 ∈ ℝ3×4 and Θ 2 ∈ ℝ1×4

“activation” of unit 𝑖 in layer 𝑙

matrix of weights controlling function 

mapping from layer 𝑙 to layer 𝑙 + 1

𝑎𝑖
𝑙
=

Θ 𝑙 =



/3912

Neural networks

𝑥0

𝑥1

𝑥2

𝑥3

𝑎1
(2)

𝑎2
(2)

𝑎3
(2)

ℎΘ(𝒙) 𝑎1
2
= 𝑠 Θ10

1
𝑥0 + Θ11

1
𝑥1 + Θ12

1
𝑥2 + Θ13

1
𝑥3

𝑎2
2
= 𝑠 Θ20

1
𝑥0 + Θ21

1
𝑥1 + Θ22

1
𝑥2 + Θ23

1
𝑥3

𝑎3
2
= 𝑠 Θ30

1
𝑥0 + Θ31

1
𝑥1 + Θ32

1
𝑥2 + Θ33

1
𝑥3

ℎΘ 𝒙 = 𝑎1
3
= 𝑠 Θ10

2
𝑎0

2
+ Θ11

2
𝑎1

2
+ Θ12

2
𝑎2

2
+ Θ13

2
𝑎3

2

𝑎0
2

3 units
(do not consider

bias units)

3 units
(do not consider

bias units)

If network has 𝑤𝑙 units in layer 𝑙, 𝑤𝑙+1 units in layer 𝑙 + 1, then Θ 𝑙 will be of dimension 𝑤𝑙+1 × 𝑤𝑙 + 1

In our example: Θ 1 ∈ ℝ3×4 and Θ 2 ∈ ℝ1×4

“activation” of unit 𝑖 in layer 𝑙

matrix of weights controlling function 

mapping from layer 𝑙 to layer 𝑙 + 1

𝑎𝑖
𝑙
=

Θ 𝑙 =



/3913

Forward
computation

𝑎0
1

𝑥1

𝑥2

𝑥3

𝑎1
(2)

𝑎2
(2)

𝑎3
(2)

ℎΘ(𝒙)

𝑎0
2

ℎΘ 𝒙 = 𝑎1
3
= 𝑠 Θ10

2
𝑎0

2
+ Θ11

2
𝑎1

2
+ Θ12

2
𝑎2

2
+ Θ13

2
𝑎3

2

𝑎1
2
= 𝑠 Θ10

1
𝑥0 + Θ11

1
𝑥1 + Θ12

1
𝑥2 + Θ13

1
𝑥3

𝑧1
2

𝑎2
2
= 𝑠 Θ20

1
𝑥0 + Θ21

1
𝑥1 + Θ22

1
𝑥2 + Θ23

1
𝑥3

𝑧2
2

𝑎3
2
= 𝑠 Θ30

1
𝑥0 + Θ31

1
𝑥1 + Θ32

1
𝑥2 + Θ33

1
𝑥3

𝑧3
2

𝑎1
2
= 𝑠 𝑧1

2

𝑎2
2
= 𝑠 𝑧2

2

𝑎3
2
= 𝑠 𝑧3

2

𝒙 =

𝑥0
𝑥1
𝑥2
𝑥3

𝒛 2 =

𝑧1
2

𝑧2
2

𝑧3
2

𝑧1
3

𝒛 2 = Θ 1 𝒙

𝒂 2 = 𝑠 𝒛 2 𝒂 2 ≡ 𝑎0
2

𝒂 2
𝑇

𝒛 3 = Θ 2 𝒂 2

ℎΘ 𝒙 = 𝒂 3 = 𝑠 𝒛 3

⋯
⋮ ⋱ ⋮

⋯
⋮

𝒂 2 =

𝑎1
2

𝑎2
2

𝑎3
2



/39

1. Neural networks: basic concepts

2. Neural networks: learning

3. Tips & tricks

4. Deep learning

Outline

14



/3915

Multi-class classification

ℎΘ 𝒙 ∈ ℝ4

ℎΘ 𝒙 ≈

1
0
0
0

ℎΘ 𝒙 ≈

0
1
0
0

• Neural networks can deal

straightforwardly with multiple outputs

ℎΘ 𝒙 ≈

0
0
1
0

ℎΘ 𝒙 ≈

0
0
0
1

• Then, we want that the following to hold:

• Suppose we want to classify in 4 classes

When class 1 When class 2 When class 3 When class 4



/3916

Neural networks for classification

𝒟 = 𝒙 1 , 𝑦 1 ,… , 𝒙 𝑁 , 𝑦 𝑁

𝐿 = total number of layers in network

𝑤𝑙 = number of units (not counting bias unit) in layer 𝑙

Binary classification

𝑦 = 0 or 𝑦 = 1

1 output unit

Multiclass classification (C classes)

𝑦 ∈ ℝ𝐶

𝐶 output units

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1



/3917

Cost function for classification

𝐽 𝜽 = −

𝑖=1

𝑁

𝑦 𝑖 ln ℎ𝜽 𝒙 𝑖 + 1 − 𝑦 𝑖 ln 1 − ℎ𝜽 𝒙 𝑖 +
𝜆

2


𝑗=1

𝑑−1

𝜃𝑗
2

Logistic regression

Additional
regularization term

Neural network

𝐽 Θ = −

𝑖=1

𝑁



𝑐=1

𝐶

{𝑦}𝑐 𝑖 ln ℎΘ 𝒙 𝑖
c
+ 1 − {𝑦}𝑐 𝑖 ln 1 − ℎΘ 𝒙 𝑖

c
+
𝜆

2


𝑙=1

𝐿−1



𝑖=1

𝑤𝑙



𝑗=1

𝑤𝑙+1

Θ𝑗𝑖
𝑙

2

ℎΘ 𝒙 ∈ ℝ𝐶 ℎΘ 𝒙 c = 𝑐-th output



/3918

Gradient computation
Given the cost function 𝐽 Θ , we now have to minimize it. Need to compute:
• 𝐽 Θ : cost function

•
𝜕

𝜕Θ𝑖𝑗
𝑙 𝐽 Θ : gradient with respect to the network parameters (weights), Θ𝑖𝑗

𝑙
∈ ℝ

Neural networks models use an algorithm called Backpropagation

Backpropagation is an algorithm to compute gradients. It relies on the chain rule of 

derivatives



/39

1. Neural networks: basic concepts

2. Neural networks: learning

3. Tips & tricks

4. Deep learning

Outline

19



/3920

Activation functions

Sigmoid

𝑦 𝑥 =
1

1 + 𝑒−𝑥

Hyperbolic tang.
𝑦 𝑥 = 𝑡𝑎𝑛ℎ(𝑥)

ReLU
𝑦 𝑥 = 𝑚𝑎𝑥(0, 𝑥)

Leaky ReLU
𝑦 𝑥 = 𝑚𝑎𝑥(0.1𝑥, 𝑥)

ELU

𝑦 𝑥 = ቊ
𝑥

𝛼(𝑒𝑥 − 1)
𝑥 ≥ 0
𝑥 < 0

There are different (nonlinear) activation functions that can be used. The following can be 
used in the hidden layers. In the output layer, we used sigmoid for classification and a 
linear function for regression. In this case, the cost function can be the squared error.



/3921

Weights random initialization
It is not correct to inizialize all the parameters to zero. It turns out that in this way the

network learns the same feature for each neuron, since 𝜕𝐽 Θ

𝜕Θ𝑖𝑗
𝑙 is the same for each weight

• A proper initialization is mandatory to alleviate the vanishing or exploding gradient

probems [13]

Common heuristics: generate weights from a Gaussian distribution of proper dimension, 
and then multiply for a number that depends on the network dimension and activation 

ReLU

Θ 𝑙 = randn w𝑙 , 𝑤𝑙−1 ⋅
2

𝑤𝑙−1

Tanh

Θ 𝑙 = randn w𝑙 , 𝑤𝑙−1 ⋅
2

𝑤𝑙−1 + 𝑤𝑙

Θ 𝑙 = randn w𝑙 , 𝑤𝑙−1 ⋅
1

𝑤𝑙−1

Xavier 
initialization

ReLU units exibit less vanishing or 
exploding gradients problems



/3922

Input normalization
It is often useful to normalize the inputs to the neural net (and in general to all

optimization algorithms) in order to lead to faster convergence of the gradient descent

𝑥2

𝑥1 5

3

𝑥1

𝑥2

𝑥1

𝑥2

ො𝜇𝑗 =
1

𝑁


𝑖=1

𝑁

𝑥𝑗 𝑖

Subtract mean Normalize variance

ො𝜎𝑗
2 =

1

𝑁


𝑖=1

𝑁

𝑥𝑗 𝑖 − 𝜇𝑗
2 𝑥𝑗 𝑖 =

𝑥𝑗 𝑖 − ො𝜇𝑗

ො𝜎𝑗
2

Normalize new data using
THE SAME MEAN AND THE
SAME VARIANCE of the
training data



/3923

Input normalization

𝜃1
𝜃0

𝐽 𝜃0, 𝜃1

Unnormalized Normalized

𝜃1
𝜃0

𝐽 𝜃0, 𝜃1

𝜃0 𝜃0

𝜃1 𝜃1



/3924

Mini batch gradient descent
Nowdays, neural networks are not trained by computing the full gradient, that requires all

examples

• The stochastic gradient descent does a gradient descent step each time a new data

is available

 This is both faster to compute and also leads to improved regularization

properties. However, the gradient based on only one sample tends to be very noisy

• For this reason, modern implementations allow to specify a batch of data that will be

used to compute the gradient. This is called mini-batch gradient descent



/3925

Dropout
Dropout is a regularization technique specifically designed for neural networks [12]

• It consists into (probabilistically) turn off (drop) random neurons of the network during

the training phase

• These units are not considered during forward and backward passes

• It is like the are performing an averaging of less complex models

Dropout forces a neural network to learn more robust

features that are useful in conjunction with many

different random subsets of the other neurons.



/3926

Other tricks and heuristics

There exists different tricks that can be used to improve the learning of the neural net:

• Batch normalization: normalization step performed on every batch of data

• Learning rate decay: decrease the learning rate progressively as we reach towards

the minimum

• Advanced optimization schemes: Momentum, RMSprop, ADAM



/3927

https://towardsdatascience.com/types-of-optimization-algorithms-used-in-neural-networks-and-ways-to-optimize-gradient-95ae5d39529f

Stochastic Gradient Descent (SGD) is the slowest SGD gets stuck in saddle point



/39

1. Neural networks: basic concepts

2. Neural networks: learning

3. Tips & tricks

4. Deep learning

Outline

28



/3929

Deep learning
The rise of available data, computational power and research innovations (such as the 

improvements in optimization just reviewed) allowed to train more complex models

• Neural networks with many layers and particular architectures were named deep

learning models

• They became state-of-art in many tasks, most often for the more unstructed ones

(computer vision, Natural Language Processing,…)

• In the next lessons we will talk about Convolutional Neural Networks, a particular

type of deep architecture used for image analysis



/3930

Deep learning and bias-variance tradeoff
In principle, deep learning models require a lot of data, since they are very complex 

(remember the VC analysis)

• Therefore, most deep learning projects have the train and test data that come from 

different distributions (and different applicative domain)

• On the first domain we have a lot of data and we train the model. But, the trained model 

needs to be employed on the second domain, for which we could have few examples

• The train/validation/test set paradigm needs to slightly change to reflect this data 

mismatch problem [14]



/3931

Traditional train/validation/test and bias-variance
Say you want to build a human-level speech recognition system. You split your data into 

train/validation/test:

By knowing what the human-level
performance is, it is possible to tell when a
training set is performing well, too well or
not well.

Human error is often an “upper bound” for
performance: it is very difficult to do better
than human (at least for image
classification problems)Val

Val



/3932

Basic recipe for machine learning

Val



/3933

Different training and test set distributions
Say you want to build a speech recognition system for a new in-car rearview mirror 

product. You have 50.000 hours of general speech data, and 10 hours of in-car data. 

How do you split your data?

Bad way

General speech data (50.000 hours)
In-car data
(10 hours)

Having mismatched val and test distributions is not a good idea. Your team may spend 

months optimizing for dev set performance only to find it doesn’t work well on the test set

Val



/3934

Different training and test set distributions
Say you want to build a speech recognition system for a new in-car rearview mirror 

product. You have 50.000 hours of general speech data, and 10 hours of in-car data. 

How do you split your data?

Better way

Val

Hence, a smarter way of splitting the above dataset would be just like the second line of 

the diagram. In this way, the validation and test set are from the same domain

General speech data (50.000 hours)
In-car data
(10 hours)



/3935

Different training and test set distributions
Say you want to build a speech recognition system for a new in-car rearview mirror 

product. You have 50.000 hours of general speech data, and 10 hours of in-car data. 

How do you split your data?

Best way

Test-ValTrain-Val

Create validation sets from both data distributions: a train-val and test-val set. In this 

way, any gap between the different errors can help you tackle the problem more clearly

General speech data (50.000 hours)
In-car data
(10 hours)



/3936

Different training and test set distributions

Training-Val

Val

Val

Overfitting of Val set

Training-val error



/3937

New recipe for machine learning

Val

ValMore val set data

Train-Val



/3938

More general formulation

In this way we can compare
performance in different settings,
being able to better assess the model

Training-Val error Val/Test error



/39

References

39

1. Provost, Foster, and Tom Fawcett. “Data Science for Business: What you need to know about data mining and data-
analytic thinking”. O'Reilly Media, Inc., 2013.

2. Brynjolfsson, E., Hitt, L. M., and Kim, H. H. “Strength in numbers: How does data driven decision making affect firm 
performance?” Tech. rep., available at SSRN: http://ssrn.com/abstract=1819486, 2011.

3. Pyle, D. “Data Preparation for Data Mining”. Morgan Kaufmann, 1999.
4. Kohavi, R., and Longbotham, R. “Online experiments: Lessons learned”. Computer, 40 (9), 103–105, 2007.
5. Abu-Mostafa, Yaser S., Malik Magdon-Ismail, and Hsuan-Tien Lin. ”Learning from data”. AMLBook, 2012.
6. Andrew Ng. ”Machine learning”. Coursera MOOC. (https://www.coursera.org/learn/machine-learning)
7. Domingos, Pedro. “The Master Algorithm”. Penguin Books, 2016.
8. Christopher M. Bishop, “Pattern recognition and machine learning”, Springer-Verlag New York, 2006.
9. Hastie, T., Tibshirani, R.,, Friedman, J. “The Elements of Statistical Learning”. New York, NY, USA: Springer New York 

Inc, 2001.
10. Tom Fawcett, “An introduction to ROC analysis”, Pattern Recognition Letters, Volume 27, Issue 8, 2006, Pages 861-

874, ISSN 0167-8655,
11. Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. “An Introduction to Statistical Learning: With 

Applications in R”. Springer Publishing Company, Incorporated, 2014.
12. Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. “Dropout: a simple way 

to prevent neural networks from overfitting”. J. Mach. Learn. Res. 15, 1 (January 2014), 1929-1958.
13. Andrew Ng. ”Deep learning specialization”. Coursera MOOC (https://www.coursera.org/specializations/deep-learning)
14. Andrew Ng, ”The nuts and bolts of deep learning”, https://media.nips.cc/Conferences/2016/Slides/6203-Slides.pdf

http://ssrn.com/abstract=1819486
https://www.coursera.org/learn/machine-learning
https://www.coursera.org/specializations/deep-learning
https://media.nips.cc/Conferences/2016/Slides/6203-Slides.pdf

