

UNIVERSITÀ DEGLI STUDI DI BERGAMO

Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione

Lesson 5.

Overfitting and regularization

DATA SCIENCE AND AUTOMATION COURSE

MASTER DEGREE SMART TECHNOLOGY ENGINEERING

TEACHER Mirko Mazzoleni

PLACE University of Bergamo

1. Overfitting

2. Regularization: the technique

3. Regularization: types

1. Overfitting

2. Regularization: the technique

3. Regularization: types

Overfitting

Dipartimento
di Ingegneria Gestionale,
dell'Informazione e della Produzione

Overfitting

We encountered the overfitting phenomenon when we talked about the **approximation**-**generalization tradeoff**.

We saw how we have to use simpler models if
we have few data, independently of the
complexity of the true function

Match the "model complexity" to the data

resources, not to the **target complexity**

We now introduce another cause for the overfitting: the **stochastic noise** on output data y

Overfitting example

- Simple function to learn
- N = 5 points
- Model: 4-th order polynomial

$$E_{in} = 0$$
 $E_{out} = 0$

A Dipartimento
Di di Ingegneria Gestionale,
D dell'Informazione e della Produzione

Overfitting example

- Simple function to learn
- N = 5 **noisy** points
- Model: 4-th order polynomial

A | Dipartimento
DI di Ingegneria Gestionale,
O dell'Informazione e della Produzione

Overfitting example

- Simple function to learn
- N = 5 **noisy** points
- Model: 4-th order polynomial

$$E_{in} = 0$$
 $E_{out} =$ huge

Dipartimento
di Ingegneria Gestionale,
dell'Informazione e della Produzione

Overfitting vs. model complexity

- We talk of **overfitting** when decreasing E_{in} leads to increasing E_{out}
- Major source of failure for machine learning systems
- Overfitting leads to bad generalization
- A model can exhibit bad generalization even if it does not overfit

Overfitting vs. model complexity

Bias-variance tradeoff revisited

Let the stochastic noise η be a random variable with zero mean and variance σ^2

$$\mathbb{E}_{\mathcal{D},\mathbf{x},\eta} \left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \underbrace{\left(f(\mathbf{x}) + \eta(\mathbf{x}) \right)}_{\mathsf{observe}} \right)^2 \right] = \begin{array}{c} \text{Instead of } y = f(\mathbf{x}), \text{ we} \\ \text{observe } \tilde{y} = f(\mathbf{x}) + \eta(\mathbf{x}) \\ \mathbb{E}_{\mathcal{D},\mathbf{x}} \left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x}) \right)^2 \right] + \mathbb{E}_{\mathbf{x}} \left(\bar{g}(\mathbf{x}) - f(\mathbf{x}) \right)^2 + \mathbb{E}_{\eta,\mathbf{x}} \left[\left(\eta(\mathbf{x}) \right)^2 \right] \\ \underbrace{\mathbb{E}_{\mathcal{D},\mathbf{x}} \left[\left(g^{(\mathcal{D})}(\mathbf{x}) - \bar{g}(\mathbf{x}) \right)^2 \right]}_{\mathsf{var}} + \underbrace{\mathbb{E}_{\mathbf{x}} \left(\bar{g}(\mathbf{x}) - f(\mathbf{x}) \right)^2}_{\sigma^2} + \underbrace{\mathbb{E}_{\eta,\mathbf{x}} \left[\left(\eta(\mathbf{x}) \right)^2 \right]}_{\sigma^2} \\ \end{array}$$

- The error σ^2 can not be driven to zero
- The stochastic noise contributes to the variance of the chosen hypotesis, causing overfitting

1. Overfitting

2. Regularization: the technique

3. Regularization: types

A cure for overfitting

Regularization is the first line of defense against overfitting

- We have seen that **complex models** are more prone to overfitting
 - \checkmark This is because they are more powerful, and thus they can fit the noise
- **Simple models** exhibit less variance because of their limited expressivity. This gain in variance often is greater than their greater bias
 - ✓ However, if we stick only to simple models, we may not end up with a satisfying approximation of the target function f

How can we retain the benefits of **both** worlds?

We can "recover" the model \mathcal{H}_2 from the model \mathcal{H}_4 by **imposing** $\theta_3 = \theta_4 = 0$

This can be done by minimizing, along with $J(\theta)$, also the value of the parameters θ_3 , θ_4

A cure for overfitting

More generally, instead of minimizing the in-sample error E_{in} (i.e. the cost function $J(\theta)$),

minimize the **augmented error:**

For simplicity, suppose $J(\theta)$ as squared error function

$$E_{aug}(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} \left(h(\boldsymbol{x}(i), \boldsymbol{\theta}) - f(\boldsymbol{x}(i)) \right)^2 + \lambda \cdot \sum_{j=1}^{d-1} \left(\theta_j \right)^2$$

- Usually we do not want to penalize the intercept θ_0 , so j starts from 1
- The term $\Omega(h) = \sum_{j=1}^{d-1} (\theta_j)^2$ is called **regularizer**
- The regularizer is a penalty term which depends on the hypothesis h
- The term λ (regularization hyper-parameter) weights the importance of minimizing $J(\theta)$, with respect to minimizing $\Omega(h)$.

A cure for overfitting

The minimization of E_{aug} can be viewed as a **constrained** minimization problem

minimize
$$E_{in}(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} \left(h(\boldsymbol{x}(i), \boldsymbol{\theta}) - f(\boldsymbol{x}(i)) \right)^2$$

subject to $\boldsymbol{\theta}^T \boldsymbol{\theta} \leq C$

- With this view, we are explicitly **constraining the weights to not have large values**
- There is a relation between C and λ in such a way that if $C \uparrow$ then $\lambda \downarrow$
- In fact, bigger C means that the weights can be greater. This is equal to set for a lower λ, because the regularization term will be less important, and therefore the weights will not be shrunken as much

Effect of λ

À | Dipartimento
Di di Ingegneria Gestionale,
O | dell'Informazione e della Produzione

Augmented error

General form of the augmented error

$$E_{aug}(\boldsymbol{\theta}) = E_{in}(\boldsymbol{\theta}) + \lambda \Omega(h)$$

Recalling the VC generalization bound

 $\underline{E_{out}}(\theta) \leq \underline{E_{in}}(\theta) + \Omega(\mathcal{H})$

- $\Omega(h)$ is a measure of complexity of a specific hypothesis $h \in \mathcal{H}$
- $\Omega(\mathcal{H})$ measures the complexity of the hypothesis space \mathcal{H}
- The two quantities are obviously related, in the sense that a more complex hypothesis

space ${\mathcal H}$ is described by more complex function h

The augmented error E_{aug} is **better** than E_{in} as a proxy for E_{out}

Augmented error

The holy Grail of machine learning would be to have a formula for E_{out} to minimize

- In this way, it would be possible to **directly minimize** the out of sample error instead of the in sample one
- **Regularization** helps by estimating the quantity $\Omega(h)$, which, added to E_{in} , gives E_{aug} , an estimate of E_{out}

1. Overfitting

2. Regularization: the technique

3. Regularization: types

Choice of the regularizer

There are many choices of possible regularizers. The most used ones are:

- L₂ regularizer: also called Ridge regression $\Omega(h) = \sum_{j=1}^{d-1} (\theta_j)^2$
- L₁ regularizer: also called Lasso regression $\Omega(h) = \sum_{j=1}^{d-1} |\theta_j|$
- Elastic-net regularizer: $\Omega(h) = \sum_{j=1}^{d-1} \beta(\theta_j)^2 + (1-\beta) \sum_{j=1}^{d-1} |\theta_j|$

The different regularizers behaves differently:

- The ridge penalty tends to shrink all coefficients to a **lower value**
- The lasso penalty tends to set more coefficients exactly to zero
- The elastic-net penalty is a compromise between ridge and lasso, with the β value controlling the two contributions

Geometrical interpretation

Dipartimento
di Ingegneria Gestionale,
dell'Informazione e della Produzione

1. Overfitting

2. Regularization: the technique

3. Regularization: types

Regularization and bias-variance

The effects of the regularization procedure can be observed in the **bias and variance** terms

- Regularization **trades bias** in order to considerably **decrease the variance** of the model
- Regularization strives for smoother hypothesis, thus reducing the opportunities to overfit
- The amount of regularization λ has to be chosen specifically for each type of regularizer
- Usually λ is chosen by **cross-validation**

