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Puzzle
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Focus on supervised learning: which are the plausible response values of the unknown

function, on positions of the input space that we have not seen? [5]
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Puzzle
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It is not possible to know how the function behaves outside the observed points

(Hume’s induction problem) [7]
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Feasibility of learning
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Focus on supervised learning, dichotomous classification case

Problem: learn an unknown function 𝑓

Solution: Impossible. The function can assume any value outside the data we have

Experiment

• Consider a “bin” with red and green marbles

BIN

SAMPLE

Fraction of 

red marbles

Probability of red marbles

• ℙ picking a red marble = 𝑝

• The value of 𝑝 is unknown to us

• Pick 𝑁 marbles independently

• Fraction of red marbles in the sample = Ƹ𝑝
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Does Ƹ𝑝 say something about 𝑝? 
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No!

Sample can be mostly green while bin

is mostly red

BIN

SAMPLE

Fraction of 

red marbles

Probability of red marbles

Yes!

Sample frequency Ƹ𝑝 is likely close to bin

frequency 𝑝 (if the sample is sufficiently large)

Possible

Probable
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Does Ƹ𝑝 say something about 𝑝? 
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In a big sample (large 𝑁), Ƹ𝑝 is probably close to 𝑝 (within 𝜖)

This is stated by the Hoeffding’s inequality:

ℙ ො𝑝 − 𝑝 > 𝜀 ≤ 2𝑒−2𝜀
2𝑁

The statement Ƹ𝑝 = 𝑝 is P.A.C. (Probably Approximately Correct)

• The quantity Ƹ𝑝 − 𝑝 > 𝜀 is a bad event, we want its probability to be low

• The bound is valid for all 𝑁 and 𝜀 is a margin of error

• The bound does not depend on 𝑝

• If we set for a lower margin 𝜀, we have to increase the data 𝑁 in order to have a small

probability of Ƹ𝑝 − 𝑝 > 𝜖 (bad event) happening
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Connection to learning 
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Bin: The unknown is a number 𝑝

Learning: The unknown is a function 𝑓:𝒳 → 𝒴

Each marble  is a input point 𝒙 ∈ 𝒳 ⊂ ℝ𝑑×1

For a specific hypothesis ℎ ∈ ℋ:

 Ĥypothesis got it right ℎ 𝒙 = 𝑓(𝒙)

 Hypothesis got it wrong ℎ 𝒙 ≠ 𝑓(𝒙)

Both 𝑝 and Ƹ𝑝 depend on the particular hypothesis ℎ

Ƹ𝑝 → in-sample error 𝐸𝑖𝑛 ℎ

𝑝 → out-of-sample error 𝐸𝑜𝑢𝑡 ℎ
The Out of sample error 𝐸𝑜𝑢𝑡(ℎ) is the quantity 

that really matters



/35

• With many hypotheses, there is more probability to find a good hypothesis 𝑔 only by 

chance

Connection to REAL learning 

10

In a learning scenario, the function ℎ is not fixed a priori

• The learning algorithm is used to fathom the hypothesis space ℋ, to find the best

hypothesis ℎ ∈ ℋ that matches the sampled data → call this hypothesis 𝑔

→ the function can be perfect on sampled data but bad on unseen data

There is therefore an approximation - generalization tradeoff between:

• Perform well on the given (training) dataset

• Perform well on unseen data
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Connection to REAL learning 
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The Hoeffding’s inequality becomes:

The quantity 𝐸𝑜𝑢𝑡 𝑔 − 𝐸𝑖𝑛(𝑔) is called the generalization error 

ℙ 𝐸𝑖𝑛 𝑔 − 𝐸𝑜𝑢𝑡 𝑔 > 𝜀 ≤ 2𝑀𝑒−2𝜀
2𝑁

where 𝑀 is the number of hypotheses in ℋ →𝑀 can be infinity 

It turns out that the number of hypotheses 𝑀 can be replaced by a quantity 𝑚ℋ 𝑁

(called the growth function) which is eventually bounded by a polynomial 

Probability of a “bad event” is less than a

huge number not useful bound
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Connection to REAL learning 
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It turns out that the number of hypotheses 𝑀 can be replaced by a quantity 𝑚ℋ 𝑁

(called the growth function) which is eventually bounded by a polynomial 

• This is due to the fact the 𝑀 hypotheses will be very overlapping → They generate the

same “classification dichotomy” 

Vapnik-Chervonenkis Inequality

ℙ 𝐸𝑖𝑛 𝑔 − 𝐸𝑜𝑢𝑡 𝑔 > 𝜀 ≤ 4𝑚ℋ 2𝑁 𝑒−
1
8
𝜀2𝑁

𝑥1

𝑥2
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Generalization theory
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The VC-dimension is a single parameter that characterizes the growth function

Definition
The Vapnik-Chervonenkis dimension of a hypothesis set ℋ is the max number of points for
which the hypothesis can generate all possible classification dichotomies

It can be shown that:

• If the 𝑑𝑉𝐶 is finite, then 𝑚ℋ ≤ 𝑁𝑑𝑉𝐶 + 1 → this is a polynomial that will be eventually
dominated by 𝑒−𝑁 → generalization guarantees

• For linear models 𝑦 = σ𝑗=1
𝑑−1𝜃𝑗𝑥𝑗 + 𝜃0 we have that 𝑑𝑉𝐶 = 𝑑 → can be interpreted as

the number of parameters of the model

𝑥1 𝑥2

𝑥2

𝑥1 𝑥1 𝑥1 𝑥1

𝑁 = 3

Max n° dichotomies 
2𝑁 = 8

𝑥2 𝑥2 𝑥2 𝑥2 𝑥2

𝑥1

𝑥2

𝑥1

𝑥2

𝑥1

𝑥2
𝑁 = 4
The linear model is not able to provide all 24

dichotomies, we would need a nonlnear one
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Rearranging things

14

Start from the VC inequality:

ℙ 𝐸𝑖𝑛 𝑔 − 𝐸𝑜𝑢𝑡 𝑔 > 𝜀 ≤ 4𝑚ℋ 2𝑁 𝑒−
1
8
𝜀2𝑁

𝛿

Get 𝜀 in terms of 𝛿:

𝛿 = 4𝑚ℋ 2𝑁 𝑒−
1
8
𝜀2𝑁

⇒ 𝜀 =
8

𝑁
ln
4𝑚ℋ 2𝑁

𝛿
Interpretation

• I want to be at most 𝜀 away from 𝐸𝑜𝑢𝑡, given that I have 𝐸𝑖𝑛

• I want this statement to be correct ≥ (1 − 𝛿)% of the times 

• Given any two of 𝑁, 𝛿, 𝜀 it is possible to compute the remaining element 

Ω
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Generalization bound

16

Following previous reasoning, it is possible to say that, with probability ≥ 1 − 𝛿:

𝐸𝑖𝑛 𝑔 − 𝐸𝑜𝑢𝑡 𝑔 ≤ Ω 𝑁,ℋ, 𝛿 ⇒ −Ω 𝑁,ℋ, 𝛿 ≤ 𝐸𝑖𝑛 𝑔 − 𝐸𝑜𝑢𝑡 𝑔 ≤ Ω 𝑁,ℋ, 𝛿

Solving for inequalities leads to:

1. 𝐸𝑜𝑢𝑡 𝑔 ≥ 𝐸𝑖𝑛 𝑔 − Ω 𝑁,ℋ, 𝛿

2. 𝑬𝒐𝒖𝒕 𝒈 ≤ 𝑬𝒊𝒏 𝒈 + 𝛀 𝑵,𝓗, 𝜹

→ Not of much interest  

→ Bound on the out of sample error!  

Observations

• 𝐸𝑖𝑛 𝑔 is known

• The penalty Ω can be computed if 𝑑𝑉𝐶 ℋ is known and 𝛿 is chosen
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Generalization bound

17

Analysis of the generalization bound 𝐸𝑜𝑢𝑡 𝑔 ≤ 𝐸𝑖𝑛 𝑔 + Ω 𝑁,ℋ, 𝛿

VC dimension

E
rr

o
r

Out of sample error

Model complexity

In sample error

Model complexity≈ number of model parameters

• Ω ↑ if 𝑑𝑉𝐶 ↑

• Ω ↑ if 𝛿 ↓

• Ω ↓ if 𝑁 ↑

• 𝐸𝑖𝑛 ↓ if 𝑑𝑉𝐶 ↑

→ More penalty for model complexity

→ More penalty for higher confidence

→ Less penalty with more examples

→ A more complex model can fit the
data better

Ω =
8

𝑁
ln
4𝑚ℋ 2𝑁

𝛿

The optimal model is a compromise between 
𝐸𝑖𝑛 and Ω
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Take home lessons

18

Generalization theory, based on the concept of VC-dimension, studies the cases in which 
it is possible to generalize out of sample what we find in sample

• The takeaway concept is that learning is feasible in a probabilistic way
• If we are able to deal with the approximation-generalization tradeoff, we can say with 

high probability that the generalization error is small

Rule of thumb
How many data points 𝑁 are required to ensure a good generalization bound? 

𝑁 ≥ 10 ⋅ 𝑑𝑉𝐶

General principle
Match the “model complexity” to the data resources, not to the target complexity
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Approximation vs. generalization

20

The ultimate goal is to have a small 𝐸𝑜𝑢𝑡: good approximation of 𝑓 out of sample

• More complex ℋ ⇒ better chances of approximating 𝑓 in sample → if ℋ is too simple,
we fail to approximate 𝑓 and we end up with a large 𝐸𝑖𝑛

• Less complex ℋ ⇒ better chance of generalizing out of sample → if ℋ is too complex,
we fail to generalize well

Ideal: ℋ = 𝑓 winning lottery ticket
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Approximation vs. generalization

21

The example shows: 

• perfect fit on in sample (training) data 

↓

𝐸𝑖𝑛 = 0

• low fit on out of sample (test) data 

↓

𝐸𝑜𝑢𝑡 huge
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Quantifying the tradeoff

22

VC analysis was one approach: 𝐸𝑜𝑢𝑡 ≤ 𝐸𝑖𝑛 + Ω

Bias-variance analysis is another: decomposing 𝐸𝑜𝑢𝑡 into:

1. How well ℋ can approximate 𝑓

2. How well we can zoom in on a good ℎ ∈ ℋ, using the available data

It applies to real valued targets and uses squared error

The learning algorithm is not obliged to minimize squared error loss. However, we 

measure its produced hypothesis’s bias and variance using squared error 

→ Bias

→ Variance
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Bias and variance
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The out of sample error is (making explicit the dependence of 𝑔 on 𝒟)

The expected out of sample error of the learning model is independent of the particular

realization of data set used to find 𝑔 𝒟 :
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Bias and variance

26

Focus on Define the “average” hypothesis 

This average hypothesis can be derived by imagining many datasets 𝒟1, 𝒟2, … , 𝒟𝑘 and 

building it by → this is a conceptual tool, and ҧ𝑔 does not need to
belong to the hypothesis set
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Bias and variance
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Therefore
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Bias and variance

28

Interpretation

• The bias term measures how much our learning model is biased away

from the target function

• The variance term measures the variance in the final

hypothesis, depending on the data set, and can be thought as how much the final

chosen hypothesis differs from the “mean” (best) hypothesis

In fact, ҧ𝑔 has the benefit of learning from an unlimited number of datasets, so it is only

limited in its ability to approximate 𝑓 by the limitations of the learning model itself
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Bias and variance

29

Very small model. Since there is only one
hypothesis, both the average function ҧ𝑔 and the
final hypothesis 𝑔 𝒟 will be the same, for any
dataset. Thus, var = 0. The bias will depend solely
on how well this single hypothesis approximates
the target 𝑓, and unless we are extremely lucky, we
expect a large bias

Very large model. The target function is in ℋ.
Different data sets will led to different hypotheses
that agree with 𝑓 on the data set, and are spread
around 𝑓 in the red region. Thus, bias ≈ 0

because ҧ𝑔 is likely to be close to 𝑓. The var is large
(heuristically represented by the size of the red
region)
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Learning curves

31

How it is possible to know if a model is suffering from bias or variance problems?

The learning curves provide a graphical representation for assessing this, by plotting:

• the expected out of sample error 𝔼𝒟 𝐸𝑜𝑢𝑡 𝑔
𝒟

• the expected in sample error 𝔼𝒟 𝐸𝑖𝑛 𝑔𝒟

with respect to the number of data 𝑁

In practice, the curves are computed from one dataset, or by dividing it into more

parts and taking the mean curve resulting from the various sub-datasets 

𝒟1 𝒟2 𝒟3 𝒟4 𝒟5 𝒟6

𝒟
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Learning curves

32

Number of data points,

E
x
p
e
ct

e
d
 E

rr
o
r

Number of data points,

E
x
p
e
ct

e
d
 E

rr
o
r

Simple model Complex model



/35

Learning curves
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Interpretation

• Bias can be present when the expected error is quite high and 𝐸𝑖𝑛 is similar to 𝐸𝑜𝑢𝑡

• When bias is present, getting more data is not likely to help

• Variance can be present when there is a gap between 𝐸𝑖𝑛 and 𝐸𝑜𝑢𝑡

• When variance is present, getting more data is likely to help

Fixing bias

• Try add more features

• Try polynomial features

• Try a more complex model

• Boosting

Fixing variance

• Try a smaller set of features

• Get more training examples

• Regularization

• Bagging
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Learning curves: VC vs. bias-variance analysis
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Pictures taken from [5]
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