
University of Bergamo, Data Science and Automation, a.a. 2019-2020 11

Data Science and Automation

Lesson 21
PLC – Structured Text Language

University of Bergamo, Data Science and Automation, a.a. 2019-2020 2

Introduction

Structured Text is the highest level language described by the
IEC 61131 norm.

Its syntax is similar to that of Fortran and Pascal.

Each PLC producer personalizes the language, creating a
custom «dialect» (that is not compliant with other
environment or other PLC produced by different brands).

We will see the «dialect» used in Automation Studio.

University of Bergamo, Data Science and Automation, a.a. 2019-2020 3

Basic Structure

Each structured text file consists of three different programs:
•Init program
•Cyclic program
•Exit program

N.B.1: Init and Exit program are not mandatory.
N.B.2: Automation Studio allows to use these three kind of
programs also with the other languages of the IEC 61131
norm.

University of Bergamo, Data Science and Automation, a.a. 2019-2020 4

Basic Structure

PROGRAM _INIT

(* TODO : Add your code here *)

END_PROGRAM

PROGRAM _CYCLIC

(* TODO : Add your code here *)

END_PROGRAM

Start of the program

End of the program

Program Type

Comments

University of Bergamo, Data Science and Automation, a.a. 2019-2020 5

Basic Structure

N.B.: the PROGRAM_INIT is executed when the PLC is turned
on, the PROGRAM_CYCLIC is executed cyclically depending on
the task schedule of the PLC. This means that all the
instructions in the PROGRAM_CYCLIC are executed for every
cycle!

Example
PROGRAM_INIT

i := 0;
END_PROGRAM

PROGRAM _CYCLIC
i := i + 1;
IF i>=100 THEN

i := 0;
END_IF;

END_PROGRAM 0 2 4 6 8 10
0

2

4

6

8

10

Ciclo

i

University of Bergamo, Data Science and Automation, a.a. 2019-2020 6

Keywords

Keyword Meaning

ACCESS Access to a dynamic variable (pointer)

BIT_CLR A = BIT_CLR(IN, POS)
A contains the value of IN with the in position POS set to 0

BIT_SET A = BIT_SET(IN, POS)
A contains the value of IN with the in position POS set to 1

BIT_TST Returns the value of a single bit: A := BIT_TST(IN, POS)
A contains the bit at position POS of IN

EDGE Identify all the edges of the input

EDGENEG Identify all the negative edges of the input

EDGEPOS Identify all the positive edges of the input

University of Bergamo, Data Science and Automation, a.a. 2019-2020 7

Operators

Operator Meaning

ABS Absolute value

ACOS Inverse cosine

ADR Address of the variable

AND AND bit per bit

ASIN Inverse sine

ASR
Shift to the right of N bit: A := ASR (IN, N);
A contains IN shifted of N bit to the right. The left part is filled with the sign
bit

ATAN Inverse tangent

COS Cosine

EXP Exponential

University of Bergamo, Data Science and Automation, a.a. 2019-2020 8

Operators

Operator Meaning

EXPT Exponentiation: A := EXPT (IN1, IN2); A=IN1IN2

LIMIT

Limit the value of a variable: A = LIMIT (MIN, IN, MAX);
MIN is the lower limit, MAX is the upper limit. If IN is less than MIN, the
operator returns MIN. If IN is greater than MAX, the operator returns MAX.
Otherwise, IN is returned.

LN Natural logarithm

LOG Base-10 logarithm

MAX Maximum between two numbers

MIN Minimum between two numbers

MOD Remainder after division between USINT, SINT, INT, UINT, UDINT, DINT
variables

MOVE Assignment; "A := B;" is equals to "A := MOVE (B);"

University of Bergamo, Data Science and Automation, a.a. 2019-2020 9

Operators

Operator Meaning

MUX Selection: A = MUX (CHOICE, IN1, IN2, ... INX)
CHOICE defines which of the variables IN1, IN2, ... INX has to be assigned to A

NOT Not bit per bit

OR Or bit per bit

ROL
Rotation bit per bit to the left: A := ROL (IN, N);
IN is shifted N times to the left bit per bit, the leftmost bit is moved to the
right

ROR
Rotation bit per bit to the right: A := ROR (IN, N);
IN is shifted N times to the right bit per bit, the rightmost bit is moved to the
left

SEL
Binary selection: A := SEL (CHOICE, IN1, IN2);
CHOICE has to be a BOOL variable. If CHOICE is FALSE, IN1 is returned.
Otherwise, IN2 is returned.

University of Bergamo, Data Science and Automation, a.a. 2019-2020 10

Operators

Operator Meaning

SHL Shift bit per bit to the left: A := SHL (IN, N);
IN is shifted of N bit to the left, the right part is filled with zeros

SHR Shift bit per bit to the right: A := SHR (IN, N);
IN is shifted of N bit to the right, the left part is filled with zeros

SIN Sine

SIZEOF Returns the number of bytes of the variable (or of the type)

SQRT Square root

TAN Tangent

TRUNC Returns only the integer part of a number

XOR XOR bit per bit

University of Bergamo, Data Science and Automation, a.a. 2019-2020 11

Control Flow Instructions

IF – THEN – ELSE

IF <expression1> THEN
<instruction_list1>

ELSIF <expression2> THEN

< instruction_list2>

.

.
ELSE

< instruction_listN>

END_IF;

ELSIF,
not ELSE IF!!!

University of Bergamo, Data Science and Automation, a.a. 2019-2020 12

Control Flow Instructions

IF – THEN – ELSE
PROGRAM _INIT

t := 0;

Out := 8;
END_PROGRAM

PROGRAM _CYCLIC

IF t < 4 THEN
t := t +1;

END_IF;
IF t < 2 THEN

Out := 0;
ELSIF t < 2 THEN

Out := 1;

ELSIF t > 3 THEN
Out := 2;

ELSE
Out := 3;

END_IF;
END_PROGRAM

Results:

Execution cycle Out

0

1

2

3

4

8

2

0

3

3

University of Bergamo, Data Science and Automation, a.a. 2019-2020 13

Control Flow Instructions

CASE

CASE <expression> OF
<value1> : <instruction_list1>

<value2>, <value3> : <instruction_list2>

<value4>..<value5> : <instruction_list3>

ELSE <instruction_list4>

END_CASE;

More values

Range of values

University of Bergamo, Data Science and Automation, a.a. 2019-2020 14

Control Flow Instructions

CASE

PROGRAM _INIT

t := 0;

Out := 8;

END_PROGRAM

PROGRAM _CYCLIC

IF t < 4 THEN

t := t +1;

END_IF;

CASE t OF

1 : Out := 6;

0, 2 : Out := 1;

3..4 : Out := 2;

ELSE Out := 4;

END_CASE;

END_PROGRAM

Results:

Execution cycle Out

0

1

2

3

4

8

2

6

2

1

University of Bergamo, Data Science and Automation, a.a. 2019-2020 15

Control Flow Instructions

FOR

N.B.: If the increment sets <expression3> to a value greater
than <expression2> the cycle is halted.

FOR <variable> := <expression1> TO <expression2> BY <expression3> DO

<lista_istruzioni>

END_FOR;

Initial value

Final value (included)

Increment per cycle

University of Bergamo, Data Science and Automation, a.a. 2019-2020 16

Control Flow Instructions

FOR

PROGRAM _INIT

A := 0;

U := 0;

END_PROGRAM

PROGRAM _CYCLIC

U := A;

FOR B := A-1 TO 1 BY -1 DO

U := U*B;

END_FOR;

END_PROGRAM

What does this code compute?

The software computes the
factorial of the number A and
assigns the result to the
variable U

University of Bergamo, Data Science and Automation, a.a. 2019-2020 17

Control Flow Instructions

REPEAT (cycle with the check condition at the end)

REPEAT

<instruction_list>

UNTIL

<expression>

END_REPEAT;

Attention!!!
If <expression> is false the
repeat is re-executed, otherwise
the execution of the cycle is
stopped.

University of Bergamo, Data Science and Automation, a.a. 2019-2020 18

Control Flow Instructions

REPEAT (cycle with the check condition at the end)
PROGRAM _INIT

A := 0;

B := 0;
C := 0;
FOR i:=0 TO 7 BY 1 DO

U[i] := 0;
END_FOR;

END_PROGRAM

PROGRAM _CYCLIC

B := A;
C := 8;
FOR i:=0 TO 7 BY 1 DO

U[i] := 0;
END_FOR;
REPEAT

C := C - 1;
U[C] := (B/REAL_TO_USINT(EXPT(2,C)))>0;

B := B - U[C]*REAL_TO_USINT(EXPT(2,C));
UNTIL C<=0
END_REPEAT;

END_PROGRAM

What does this code compute?

The software computes binary
value of the variable A and
assigns the result to the vector
U

University of Bergamo, Data Science and Automation, a.a. 2019-2020 19

Control Flow Instructions

WHILE (loop with the check condition at the begin)

WHILE <expression> DO

<instruction_list>

END_WHILE;

Attention!!!
If <expression> is true,
the loop is executed,
otherwise it stops.

University of Bergamo, Data Science and Automation, a.a. 2019-2020 20

Additional instructions

EXIT: it is like the «break» in the C language. It halts the
execution of the loop in which it is inserted.

RETURN: it is like the “return” in the C language. It halts the
execution of the function, of the function block or of the
program in which it is inserted.

University of Bergamo, Data Science and Automation, a.a. 2019-2020 21

Additional instructions

EXIT

PROGRAM _CYCLIC
U := 0;

FOR A:=0 TO 1 BY 1 DO
FOR B:=0 TO 10 BY 1 DO

IF B>=5 THEN
EXIT;

ELSE
U := U + 1;

END_IF;
END_FOR

U := U + 1;
END_FOR

END_PROGRAM

What is the value of U at the end of
the execution?

Let’s count the loops:
A=0, B=0 U = 1
…
A=0, B=5 U = 6
A=0, B=5 U = 7 ß Instruction outside the first for loop
A=1, B=0 U = 8
…
A=1, B=5 U = 13
A=1, B=5 U = 14 ß Instruction outside the first for loop

U is equal to 14

University of Bergamo, Data Science and Automation, a.a. 2019-2020 22

Function Block

A Function Block is a piece of control code, that defines some
outwards interface variables (input, internal and output).

A Function Block consists of a .st file that contains the
software written by structured text.

N.B.: Each program contains also a file .fun which gather all
the interfaces of the blocks, of the functions, etc.

University of Bergamo, Data Science and Automation, a.a. 2019-2020 23

Function Block

Example
Write a function block that computes 𝑈 = 𝐴 ∩ %𝐵

N.B.: Remind to declare, into the variables of the program
Example.st, the variabile ExampleFB with type ExampleFBD too!!

(* File ExampleFB.st *)

FUNCTION_BLOCK ExampleFBD

U := A AND NOT B;

END_FUNCTION_BLOCK;

(* File Example.st *)

PROGRAM _INIT

END_PROGRAM

PROGRAM _CYCLIC

ExampleFB(A := In1, B := In2);

Out := ExampleFB.U;

END_PROGRAM

University of Bergamo, Data Science and Automation, a.a. 2019-2020 24

Exercices

University of Bergamo, Data Science and Automation, a.a. 2019-2020 25

Exercise 1

We want to create a system that allows the transportation of
stones with a cart. The operator starts the system by pressing
the button START. The cart follows the rail from left to right
and stops itself, waiting the loading of the stones.
When the stones are accumulated into a tank, they are
transferred into the cart.
After that, the cart has to move automatically down the rail
from right to left.

University of Bergamo, Data Science and Automation, a.a. 2019-2020 26

Exercise 1

We have six sensors as
INPUTS:
• S : Start
• LL : Left Limit-switch
• RL : Right Limit-switch
• ET : Empty tank
• TD : Tank down
• TU : Tank up

We have the following
OUTPUTS:
• MR : Cart motor to the

right
• ML : Cart motor to the

left
• MTD : Tank’s motor

down
• MTU : Tank’s motor up

University of Bergamo, Data Science and Automation, a.a. 2019-2020 27

Exercise 1

University of Bergamo, Data Science and Automation, a.a. 2019-2020 28

Exercise 1

Using structured text, the code can be written in several ways.

Since structured text is an high level language, the code can
be organized as preferred by the developer, depending on
what he needs.

N.B.: it is a double-edged sword: it is possible to write a not
understandable code!

University of Bergamo, Data Science and Automation, a.a. 2019-2020 29

Exercise 1

«Ladder-based» solution

PROGRAM _INIT
ML := 0;

MR := 0;
MTD := 0;
MTU := 0;

END_PROGRAM

PROGRAM _CYCLIC
IF S AND LL AND NOT ET THEN

MR := 1;

END_IF;
IF RL THEN

MR := 0;
END_IF;
IF RL AND NOT LL AND TU AND NOT TD AND NOT ET THEN

MTD := 1;
END_IF;
IF RL AND NOT LL AND TD AND NOT TU THEN

MTD := 0;
END_IF;

IF RL AND NOT LL AND TD AND NOT TU AND ET THEN
MTU := 1;

END_IF;
IF RL AND NOT LL AND TU AND NOT TD THEN

MTU := 0;
END_IF;
IF RL AND NOT LL AND TU AND NOT TD AND ET THEN

ML := 1;
END_IF;
IF LL AND NOT RL THEN

ML := 0;
END_IF;

END_PROGRAM

University of Bergamo, Data Science and Automation, a.a. 2019-2020 30

Exercise 1

«State-based» solution
PROGRAM _INIT

ML := 0;

MR := 0;

MTD := 0;

MTU := 0;

State := 0;

END_PROGRAM

PROGRAM _CYCLIC

CASE State OF

0:

ML := 0;

MR := 0;

MTD := 0;

MTU := 0;

IF S AND NOT ET THEN

State := 1;

END_IF;

1:

MR := 1;

IF RL THEN

MR := 0;

State := 2;

END_IF;

2:

MTD := 1;

IF TD THEN

MTD := 0;

State := 3;

END_IF;

3:

IF ET THEN

MTU := 1;

State := 4;

END_IF;

4:

IF TU THEN

MTU := 0;

State := 5;

END_IF;

5:

ML := 1;

IF LL THEN

ML := 0;

State := 0;

END_IF;

END_CASE

END_PROGRAM

University of Bergamo, Data Science and Automation, a.a. 2019-2020 31

Exercise 1

Which is the best solution?

It depends on the type of the machine to be controlled: as we
will see later, in the case of the car-wash system, the “ladder-
based” solution is the simplest.

On the contrary, in the case of the machining station, the best
solution is the “state-based” one.

University of Bergamo, Data Science and Automation, a.a. 2019-2020 32

Exercise 1.1

Let’s add to the previous exercise a maintenance stop every
100 cycles.

We have to add:
SM (stop for maintenance) as output

RM (maintenance reset) as input

N.B.: We need also an internal counter variable (N) to count
how many cycles the system have excuted!

University of Bergamo, Data Science and Automation, a.a. 2019-2020 33

Exercise 1.1

PROGRAM _INIT
ML := 0;

MR := 0;
MTD := 0;
MTU := 0;
n := 0;

END_PROGRAM

PROGRAM _CYCLIC
CASE State OF

0:
ML := 0;
MR := 0;

MTD := 0;
MTU := 0;
IF S AND NOT ET THEN

State := 1;

END_IF;
1:

MR := 1;

IF RL THEN
MR := 0;

State := 2;
END_IF;

2:
MTD := 1;

IF TD THEN
MTD := 0;
State := 3;

END_IF;

3:
IF ET THEN

MTU := 1;

State := 4;
END_IF;

4:
IF TU THEN

MTU := 0;
State := 5;

END_IF;

5:
ML := 1;

IF LL THEN
ML := 0;
n := n + 1;
IF n>=100 THEN

SM := 1;
State := 6;

ELSE
State := 0;

END_IF;
END_IF;

6:

IF RM THEN
SM := 0;
n := 0;
State := 0;

END_IF;
END_CASE

END_PROGRAM

University of Bergamo, Data Science and Automation, a.a. 2019-2020 34

Exercise 2

Consider a piece-counter with a conveyor belt.
The conveyor belt is moved by a motor which is controlled by
two buttons: START and STOP. There are two lamps that
signal the state of the conveyor belt(stopped/moving).

Each piece is placed at the beginning of the conveyor belt
and, for each piece that passes in front of a photo-cell, a
counter has to be incremented. The system has to
automatically stop itself every 50 pieces.

The conveyor belt can be stopped at any time by pressing the
STOP button. The restarting of the conveyor belt can occur by
means of the pression of the START button, but, in this case,
the counter have to retain its value.

University of Bergamo, Data Science and Automation, a.a. 2019-2020 35

Exercise 2

University of Bergamo, Data Science and Automation, a.a. 2019-2020 36

Exercise 2
• At startup, the motor that drives the conveyor belt must

be halted, so only OP1 has to be on.
• By pressing the START button, the motor starts: OP0 has to

turn on and OP1 has to turn off.
• Every time the motor is running and a new piece is

detected in front of the photocell CELL, the counter has to
be increased.

• When the counter reach the value 50, the conveyor belt
has to be stopped: OP1 has to turn on and OP0 has to turn
off. (in a following restart, the counter must start from the
value 0).

• When the conveyor belt is stopped before the value 50 the
counter must retain its value.

University of Bergamo, Data Science and Automation, a.a. 2019-2020 37

Exercise 2

PROGRAM _INIT
OP1 := 1;

OP0 := 0;
State := 0;
N := 0;

END_PROGRAM

PROGRAM _CYCLIC
CASE State OF

0: (* Stop *)

IF START AND NOT STOP THEN
OP0 := 1;
OP1 := 0;

State := 1;
END_IF;

1: (* Moving *)
IF EDGEPOS(CELL) THEN

N := N+1;
END_IF;
IF STOP THEN

State := 0;
OP1 := 1;
OP0 := 0;

END_IF;
IF N>=50 THEN

N := 0;
State := 0;

END_IF:
END_CASE;

END_PROGRAM

University of Bergamo, Data Science and Automation, a.a. 2019-2020 38

Exercise 3

Consider an automatic carwash system.

The customer approaches to the conveyor belt when the
semaphore is green. The phases of the washing are: soaping,
brushing, rinsing e drying.
All the phases are preceded by a photocell that signals the
arrival of the car in that new section of the carwash.
Every 1000 washing, the carwash system have to block itself
waiting for the maintenance, that is executed by an operator.

University of Bergamo, Data Science and Automation, a.a. 2019-2020 39

Exercise 3

Input Output

PE Entry photocell SR Stop semaphore (0=GREEN, 1=RED)

PB Brushing photocell PS Soaping pump

PR Rinsing photocell MB Brushing motor

PD Drying photocell RP Rinsing pump

POut Out photocell MD Drying motor

MR Maintenance reset MAIN Halt for maintenance

PE PB PR PD POut

PS MB RP MD

SR

MR

MAIN

University of Bergamo, Data Science and Automation, a.a. 2019-2020 40

Exercise 3

The system can be developed as a set of sub-systems:
• Soaping
•Brushing
•Rinsing
•Drying

Each of this sub-systems has to start when the previous
photocell activates its output and has to stop when the next
photocell deactivates its output.

University of Bergamo, Data Science and Automation, a.a. 2019-2020 41

Exercise 3

As shown in the previous lesson, this exercise requires a
“distributed” solution for each part of the system.

With the SFC language we cannot manage more than a single
«execution cycle» with a single code. For this reason we need
more than a program: one for each section!

In the program that manages the soaping, we will manage
also the semaphore and the mainteinance.

University of Bergamo, Data Science and Automation, a.a. 2019-2020 42

Exercise 3

FUNCTION_BLOCK PlantSection

IF NOT Activation THEN

IF EDGEPOS(Pentry) THEN

Activation := 1;

END_IF;

ELSE

IF EDGENEG(Pexit) THEN

Activation := 0;

END_IF;

END_IF;

END_FUNCTION_BLOCK

Each section is activated when
the entry photocell gives a
positive edge and is deactivated
when the exit photocell gives a
negative edge.

Inputs:
Pentry, Pexit

Outputs:
Activation

University of Bergamo, Data Science and Automation, a.a. 2019-2020 43

Exercise 3

FUNCTION_BLOCK FirstSection
IF n<1000 THEN

IF NOT StopSemaphore THEN
IF EDGEPOS(Pentry) THEN
StopSemaphore := 1;
Activation := 1;

END_IF;
ELSE

IF EDGENEG(Pexit) THEN
StopSemaphore := 0;

Activation := 0;
n := n + 1;

END_IF;
END_IF;

ELSE
StopSemaphore := 1;
Activation := 0;
MaintenanceRequired := 1;

IF MainReset THEN
n := 0;
StopSemaphore := 0;
MaintenanceRequired := 0;

END_IF;
END_IF;

END_FUNCTION_BLOCK

The first section (soaping) will have to
manage the semaphore and the scheduled
maintenance. For this reason we have to
use a different Function Block

Inputs:
Pentry, Pexit, MainReset

Outputs:
StopSemaphore, MaintenanceRequired,
Activation

University of Bergamo, Data Science and Automation, a.a. 2019-2020 44

Exercise 3

PROGRAM _INIT

END_PROGRAM

PROGRAM _CYCLIC

Soaping(Pentry := PE, Pexit := PB, MainReset := MR);

MAN := Soaping.MaintenanceRequired;

SS := Soaping. StopSemaphore;

PI := Soaping.Activation;

Brushing(Pentry := PB, Pexit := PR);

MS := Brushing.Activation;

Rinsing(Pentry := PR, Pexit := PD);

PR := Rinsing.Activation;

Drying(Pentry := PD, Pexit := POut);

MA := Drying.Activation;

END_PROGRAM

The main file of the
program is very simple:
a single instance of the
function block is
created to manage
each plant section.

N.B.: Why have we
used more that a single
type of Function Block?

University of Bergamo, Data Science and Automation, a.a. 2019-2020 45

Exercise 4

Consider a system used for automatic drilling and riveting
metal sheets.

When the two sheets are available, a robot takes them (one
by one) and places them over an assembly mask. After the
end of the placing, the pieces are perforated by an automatic
drill (5 seconds) and rivetted by a riveter (10 seconds).
At the end of the process, the robot move the produced
product in a container.

University of Bergamo, Data Science and Automation, a.a. 2019-2020 46

Exercise 4

Input

PA Piece A available LDF Drill forward limit

PB Piece B available LRB Riveter backward limit

STR Status robot (0=END, 1=EXECUTING) LRF Riveter forward limit

LDB Drill backward limit

CRB

RA

LA LB
T R

LDB LDF LRF LRB
PB

PA

STR CR

MDF MRF

OND ONR

MDB
MRB

University of Bergamo, Data Science and Automation, a.a. 2019-2020 47

Exercise 4

Output

CR Robot command (0=STOP, 1=take piece
A, 2=take piece B, 3=deposit final
product in C)

OND Drill ON

MRF Riveter motor forward

MDF Drill motor forward MRB Riveter motor backward

MDB Drill motor backward ONR Riveter ON

CRB

RA

LA LB
T R

LDB LDF LRF LRB
PB

PA

STR CR

MDF MRF

OND ONR

MDB
MRB

University of Bergamo, Data Science and Automation, a.a. 2019-2020 48

Exercise 4

The steps to be executed to create a finite product are:

1)Wait until PA=1 and PB=1
2)Send command 1 to the robot and wait the end of its execution
3)Send command 2 to the robot and wait the end of its execution
4)Move the drill forward until the forward-limit is reached
5)Operate the drill for 5 seconds
6)Move the drill backward until the backward-limit is reached
7)Move the riveter forward until the forward-limit is reached
8)Operate the riveter for 10 seconds
9)Move the riveter backward until the backward-limit is reached
10)Send command 3 to the robot and wait the end of its execution
11)Send command 0 to the robot

University of Bergamo, Data Science and Automation, a.a. 2019-2020 49

Exercise 4

PROGRAM _INIT
State := 0;

END_PROGRAM

PROGRAM _CYCLIC
CASE State OF

0: (* Stop *)
IF PA AND PB THEN

CR := 1;
State := 1;

STR := 1;
END_IF;

1: (* Take piece A *)

IF NOT STR THEN
CR := 2;
State := 2;
STR := 1;

END_IF;
2: (* Take piece B *)

IF NOT STR THEN

State := 3;
END_IF;

3: (* Drill forward *)
MDF := 1;

IF LDF THEN
MDF := 0;

State := 4;
END_IF;

4: (* Perforing *)
OND := 1;

t := t + dt;
IF t>=T#5s THEN

t := T#0s;
OND := 0;

State := 5;
END_IF;

5: (* Drill backward *)

MDB := 1;
IF LDB THEN

MDB := 0;
State := 6;

END_IF;
6: (* Riveter forward *)

MRF := 1;

IF LRF THEN
MRF := 0;
State := 7;

END_IF;

7: (* Riveting *)
ONR := 1;

t := t + dt;
IF t>=T#10s THEN

t := T#0s;
ONR := 0;

State := 8;
END_IF;

8: (* Riveter backward *)
MRB := 1;

IF FRI THEN
LRB := 0;
CR := 3;

State := 9;
STR := 1;

END_IF;
9: (* Deposit final product in the

container*)
IF NOT STR THEN

State := 0;

END_IF;
END_CASE;

END_PROGRAM

University of Bergamo, Data Science and Automation, a.a. 2019-2020 50

Conclusions

Final considerations on Structured Text
It is the higher level language of those available in the IEC
61131 norm.

It is simple but the developer has to pay attention on several
software engineering aspects (like it is also with other
programming languages for computers).

Unfortunately in the industry it is not very used: in the latest
years its use is increasing thanks to some tools that
automatically generates the code from the model of the
system.

