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Components of learning (in general)
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• Input: 𝒙 (e-mail textual content) 

• Output: 𝑦 (spam / not spam?) 

• Target function: 𝑓: 𝒳 → 𝒴 (Ideal spam filter formula) 

• Data: 𝒟 = 𝒙 1 , 𝑦 1 ,… , 𝒙 𝑁 , 𝑦 𝑁 (historical records of e-mail examples) 

✓ Each feature vector 𝒙 consists of different regressors or features, i.e. information used 

to predict the output variable

• Hypothesis: 𝑔: 𝒳 → 𝒴, 𝑔 ∈ ℋ (formula to be used)

ℋ is called the Hypothesis space. This, together with the Learning algorithm, form 
the learning model

→ each dimension is some e-mail attribute

→ the decision that we have to take in the end

→ unknown, we have to learn it

→ 𝑔 is an approximation of 𝑓
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Supervised learning
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• The “correct answer” (output label) 𝑦 is given

• Predict 𝑦 from a set of inputs 𝒙 ∈ ℝ𝑑×1

• Regression: predict a continuous output

𝑦 ∈ ℝ (real value)

• Classification: predict a discrete categorical

output 𝑦 ∈ 1,2,… , 𝐶 (class)

Classifier
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Example: house prices regression
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• Suppose we want to find a linear function which relates the measured regressors 𝑥1, 𝑥2, 𝑥3, 𝑥4
with the observed output 𝑦

• The number of rows is the number of data points (also known as number of observations) 𝑁

• The 𝑖-th observation is the vector 𝒙 𝑖 = 𝑥1 𝑖 𝑥2(𝑖) 𝑥3(𝑖) 𝑥4(𝑖)
𝑇 ∈ ℝ4𝑥1

• Each feature vector 𝒙 has associated a response 𝑦 ∈ ℝ that we want to predict for new 
observations 𝒙∗
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Single feature 𝑥3

Output 

variable 𝑦

Single observation

(feature vector) 𝒙
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Example: house prices classification
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• The components of the features vector are the same. The difference lies in the response
variable, which now is a class (categorical data type) and not a real value

• Suppose that instead of the price value in dollars, we want to classify houses as expensive
(class 𝑦 = 1) or cheap (class 𝑦 = 0)

• The point 𝒙 could be classified to class 𝑦 = 1 if the probability of 𝒙 to belong to class 1 is ≥ 0.5
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Unsupervised learning
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• Instead of (input, output) we get (input, ?)

• Here there is no a function 𝑓 to learn

• Find properties of the inputs 𝒙 ∈ ℝ𝑑×1

• High-level representation of the input

• Elements into the same cluster have similar 

properties 

Clusters
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Reinforcement learning
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• Instead of (input, output) we get 

(input, output, reward) 

• The algorithm tries to learn what action to take, in 

order to maximize the reward

• This is called a policy 

• Applications in control, robotics, A/B testing
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Business problems as data science examples - revisited
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• Spam e-mail detection system

• Credit approval

• Recognize objects in images

• Find the relation between house 
prices and house sizes

• Predict the stock market

• Market segmentation

• Market basket analysis

• Language models (word2vec)

• Social network analysis

• Low-order data representations

• Movies recommendation

Supervised Unsupervised

Supervised or unsupervised

Classification

Classification

Classification

Regression

Regression

Co-occurence
grouping

Similaritiy
matching

Clustering

Link 
prediction

Data reduction

Similarity matching
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Supervised learning: problem statement
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The aim is to learn an unknown function 𝑓 given a dataset 𝒟

• The function is searched in the hypothesis space ℋ, where ℎ ∈ ℋ is a specific function

• We want to find a function ℎ that approximates 𝑓 well, on the whole domain 𝒳

What does ℎ ≈ 𝑓 mean?

• We need to define an error measure

• Almost always this is a pointwise definition: 𝑒 𝑓 𝒙 , ℎ 𝒙
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Cost functions
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Pointwise error examples

• Squared error: 𝑒 𝑓 𝒙 , ℎ 𝒙 = 𝑓 𝒙 − ℎ 𝒙
2

• Binary error: 𝑒 𝑓 𝒙 , ℎ 𝒙 = 𝕀 𝑓 𝒙 ≠ ℎ 𝒙

It is interesting to look at the overall error, which considers all 𝑁 examples:

→ used for regression

→ used for classification

Overall error examples

• In-sample error: 𝐸𝑖𝑛 =
1

𝑁
σ𝑖=1
𝑁 𝑒 𝑓 𝒙 , ℎ 𝒙

• Out-of-sample error: 𝐸𝑜𝑢𝑡 = 𝔼𝒙 𝑒 𝑓 𝒙 , ℎ 𝒙

→ error on data that I actually have

→ error on data I could possibly observe
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Linear regression
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Aim: Suppose to have at disposal a dataset 𝒟 = 𝒙 1 , 𝑦 1 ,… , 𝒙 𝑁 , 𝑦 𝑁 . Find the

relation between a set of input variables 𝒙 ∈ ℝ 𝑑−1 ×1 and an output variable 𝑦 ∈ ℝ, using

a linear model:

• 𝑥0 = 1
• 𝒙 = 𝑥0, 𝑥1, … , 𝑥𝑑−1

𝑇 ∈ ℝ𝑑×1

• 𝜽 = 𝜃0, 𝜃1, … , 𝜃𝑑−1
𝑇 ∈ ℝ𝑑×1

Hypothesis ℎ 𝜽 : linear 
model with parameters 𝜽

Hypothesis spaceℋ: set of 
all linear models

• The vector 𝜽 is called parameters vector

• The vector 𝒙(𝑖) is called features vector for 𝑖-th observation

• The quantity 𝜖(𝑖) is the error due not perfect explanation of the 𝑦(𝑖) using 𝒙(𝑖)

→ to be found by minimizing a cost function

→ attributes of individuals

𝑦 𝑖 = 𝜃0 + 𝜃1𝑥1 𝑖 + ⋯+ 𝜃𝑑−1𝑥𝑑−1 𝑖 + 𝜖 𝑖 = 

𝑗=0

𝑑−1

𝜃𝑗 𝑥𝑗 𝑖 + 𝜖 𝑖

= 𝒙(𝑖)𝑇𝜽 + 𝜖(𝑖)
𝑑 × 11 × 𝑑 1 × 1

⋮
⋯

𝑖 −th observation
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Geometrical interpretation
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One-variable case
In this case, there is only one feature 𝑥1
and two parameters 𝜃0, 𝜃1

𝑦 𝑖 = 𝜃0 + 𝜃1𝑥1 𝑖 + 𝜖 𝑖

𝜖1

𝜖4

𝜖𝑁𝜖6

Two-variables case
In this case, there are two features 𝑥1,𝑥2
and three parameters 𝜃0, 𝜃1, 𝜃2

𝑦 𝑖 = 𝜃0 + 𝜃1𝑥1 𝑖 + 𝜃2𝑥2 + 𝜖 𝑖

𝑦Example
• 𝑦: weight [kg]
• 𝑥1: height [m]
• 𝑥2: sex [M/F]
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Least squares cost function
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How well does ℎ 𝒙 = 𝒙𝑇𝜽 approximates 𝑓 𝒙 ?

• Linear regression estimates the parameters 𝜽 using the least squares method, i.e. by

minimizing the squared error between observed and predicted output

𝐽 𝜽 = 𝐸𝑖𝑛 𝜽 =
1

𝑁


𝑖=1

𝑁

𝑦 𝑖 − 𝒙 𝑖 𝑇𝜽 2 =
1

𝑁


𝑖=1

𝑁

𝜖 𝑖
2

𝜽 = arg min
𝜃

𝐽 𝜽

One-variable case

with 𝜃0 = 0

𝑦 𝑖 = 𝜃1𝑥1 𝑖 + 𝜖 𝑖

One-variable case

with 𝜃0 ≠ 0

𝑦 𝑖 = 𝜃0 + 𝜃1𝑥1 𝑖 + 𝜖 𝑖

Cost function

⋮
⋯
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Cost function - minimization
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𝐽 𝜽 = 𝐸𝑖𝑛 𝜽 =
1

𝑁


𝑖=1

𝑁

𝑦 𝑖 − 𝒙 𝑖 𝑇𝜽 2

𝛻𝐽 𝜽 =
𝜕𝐽 𝜽

𝜕𝜽
= 𝟎

⇒ 

𝑖=1

𝑁

𝒙 𝑖 𝒙 𝑖 𝑇 𝜽 =

𝑖=1

𝑁

𝒙 𝑖 𝑦 𝑖 ⇒ 𝜽 = 

𝑖=1

𝑁

𝒙 𝑖 𝒙 𝑖 𝑇

−1

⋅ 

𝑖=1

𝑁

𝒙 𝑖 𝑦 𝑖

⋮

𝑑 × 1 𝑑 × 1

𝑑 × 1

⋮

𝑑 × 1
⋯

⋮ ⋱ ⋮
⋯

𝑑 × 𝑑
⋮

⇒
2

𝑁


𝑖=1

𝑁

𝒙 𝑖 ⋅ 𝑦 𝑖 − 𝒙 𝑖 𝑇𝜽 = 𝟎
𝑑 × 11 × 𝑑𝑑 × 1 1 × 1

⋮
⋯

⋮

• Since the model is linear in the parameters and the error measure is quadratic, the cost
function is convex

• In this case the minimum can be found in closed-form

→ it admits a unique (global) minimum

⇒

𝑖=1

𝑁

𝒙 𝑖 𝑦 𝑖 −

𝑖=1

𝑁

𝒙 𝑖 𝒙 𝑖 𝑇𝜽 = 𝟎

⋮ ⋮⋮
⋯

⋯
⋮ ⋱ ⋮

⋯
⋮⋮
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𝐽 𝜽 =
1

𝑁
𝑌 − 𝑋𝜽 2

2 =
1

𝑁
𝑌 − 𝑋𝜽 𝑇 𝑌 − 𝑋𝜽

Least squares cost function – matrix form

19

We can express the linear regression problem using matrices

𝑋 =

1 𝑥1 1 𝑥2 1 ⋯ 𝑥𝑑−1 1

1 𝑥1 2 𝑥2 2 𝑥𝑑−1 2

⋮ ⋮ ⋱ ⋮
1 𝑥1 𝑁 𝑥2 𝑁 ⋯ 𝑥𝑑−1 𝑁

𝐸 =

𝜖 1
𝜖 2
⋮

𝜖 𝑁
𝑁 × 𝑑

𝜽 =

𝜃0
𝜃1
⋮

𝜃𝑑−1
𝑑 × 1

𝑌 =

𝑦 1

𝑦 2
⋮

𝑦 𝑁
𝑁 × 1 𝑁 × 1

Features vector𝒙𝑇 𝑖

𝑋 =

𝒙𝑇 1

𝒙𝑇 2
⋮

𝒙𝑇 𝑁
𝑁 × 𝑑

𝑌 = 𝑋𝜽 + 𝐸 ⇒
𝑁 × 11 × 𝑁
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Least squares cost function – matrix form

20

It is useful to remember these matrix derivation properties:

𝛻𝒙 𝒙𝑇 ⋅ 𝐴 ⋅ 𝒙 = 𝐴 + 𝐴𝑇 ⋅ 𝒙
𝑑 × 𝑑 𝑑 × 11 × 𝑑 𝑑 × 𝑑 𝑑 × 1

𝛻𝒙 𝒙𝑇 ⋅ 𝒃 = 𝒃
𝑑 × 11 × 𝑑 𝑑 × 1

𝐽 𝜽 =
1

𝑁
𝑌 − 𝑋𝜽 𝑇 𝑌 − 𝑋𝜽 =

1

𝑁
𝑌𝑇𝑌 − 𝑌𝑇𝑋 ⋅ 𝜽 − 𝜽𝑇⋅ 𝑋𝑇 𝑌 + 𝜽𝑇 ⋅ 𝑋𝑇 𝑋 ⋅ 𝜽

𝛻𝐽 𝜽 = 𝟎 ⇒
1

𝑁
−2𝑋𝑇𝑌 + 2𝑋𝑇𝑋𝜽 = 𝟎 ⇒

1 × 𝑑𝑑 × 1 𝑑 × 𝑁 𝑁 × 1𝑁 × 𝑑1 × 𝑁

=
1

𝑁
𝑌𝑇𝑌 − 2 ⋅ 𝜽𝑇⋅ 𝑋𝑇 𝑌 + 𝜽𝑇 ⋅ 𝑋𝑇 𝑋 ⋅ 𝜽

𝜽 = 𝑋𝑇𝑋 −1𝑋𝑇𝑌
𝑑 × 𝑑 𝑁 × 1𝑑 × 𝑁𝑑 × 1

IN-DEPTH ANALYSIS 
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Normal equations
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What if the matrix 𝑋𝑇𝑋 is not invertible?

𝜽 = 𝑋𝑇𝑋 −1𝑋𝑇𝑌

theta_hat = pinv(X’*X)*X*y

Use pseudo-inverse. In MatLab:

• The method of normal equations is

slow if 𝑑 is very large

✓ To solve this, iterative methods

using gradient descent can be 

used

Normal equations

• Redundant features (linearly dependent)

✓ 𝑥1 = height inm2

✓ 𝑥2 = height in feet2

• Too many features (ex. 𝑁 ≤ 𝑑)

✓ Delete some feature

✓ Use regularization (later in the course)
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Gradient descent

23

• The gradient descent is a general iterative method for minimizing differentiable 

functions

• The value of the parameters at iteration 𝑡 + 1 is (given a random initial point 𝜽 0 )

𝜽 𝑡 + 1 = 𝜽 𝑡 − 𝛼 ⋅ 𝛻𝐽 𝜽 ቚ
𝜽=𝜽 𝑡

𝛼 ∈ ℝ>0: learning rate
𝑑 × 1𝑑 × 1𝑑 × 1 1 × 1
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24

𝜃 𝑡 + 1 = 𝜃 𝑡 − 𝛼𝛻𝐽 𝜃 ቚ
𝜃=𝜃 𝑡

Parameter 𝜃𝜃∗

𝐽 𝜃

• 𝛻𝐽 𝜃 ȁ𝜃=𝜃 𝑡 > 0 ⇒ 𝜃 𝑡 + 1 < 𝜃 𝑡

−𝛻𝐽 𝜃 ቚ
𝜃=𝜃 0

Consider the scalar case where 𝜃 ∈ ℝ

𝜃 0The new estimate is closer to the optimal
value 𝜃∗
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Gradient descent
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Weights,Parameter 𝜃𝜃∗

𝐽 𝜃

𝜃 0

−𝛻𝐽 𝜃 ቚ
𝜃=𝜃 0

• 𝛻𝐽 𝜃 ȁ𝜃=𝜃 𝑡 < 0 ⇒ 𝜃 𝑡 + 1 > 𝜃 𝑡

Consider the scalar case where 𝜃 ∈ ℝ

𝜃 𝑡 + 1 = 𝜃 𝑡 − 𝛼𝛻𝐽 𝜃 ቚ
𝜃=𝜃 𝑡

The new estimate is closer to the optimal
value 𝜃∗
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% Read data from file

data = csvread(‘housedata.txt');

X = data(:, 1:2); % Features 

y = data(:, 3); % Price

N = length(y); % Number of data 

% Add intercept term to X

X = [ones(N, 1) X];

% Calculate the parameters from 

the normal equation

theta_hat = pinv(X'*X)*X'*y;

% Estimate the price of a 1650 

sq-ft, 3 br house

price_hat = [1 3 1650]*theta_hat; 

Linear regression laboratory: predict house prices

26

We want to predict the price of the houses in
Portland, Oregon

• Each house is described by the following features
✓ 𝑥1: Number of bedrooms
✓ 𝑥2: Size [feet2]

• The training set consists of 𝑁 = 47 houses with
𝑥1 𝑖 , 𝑥2 𝑖 and 𝑦 𝑖 , for 𝑖 = 1, … , 𝑁

𝒙 𝑖 = 1 𝑥1 𝑖 𝑥2 𝑖 𝑇

3 × 1

𝑋 =

𝒙𝑇 1

𝒙𝑇 2
⋮

𝒙𝑇 𝑁
47 × 3

𝜽 =

𝜃0
𝜃1
𝜃2

3 × 1

𝑌 =

𝑦 1

𝑦 2
⋮

𝑦 47
47 × 1

𝑦 𝑖 = 𝒙 𝑖 𝑇𝜽 + 𝜖 𝑖

Point not seen during training (i.e. estimation of 𝜽)


