

UNIVERSITÀ DEGLI STUDI DI BERGAMO

Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione

Lesson 2.

Linear regression

DATA SCIENCE AND AUTOMATION COURSE

MASTER DEGREE SMART TECHNOLOGY ENGINEERING

TEACHER Mirko Mazzoleni

PLACE University of Bergamo

Outline

1. Components of learning

2. Linear regression

3. Least squares

4. Gradient descent

Outline

1. Components of learning

2. Linear regression

3. Least squares

4. Gradient descent

A Dipartimento
 Di di Ingegneria Gestionale,
 O dell'Informazione e della Produzione

Components of learning (in general)

- Input: x (e-mail textual content) \rightarrow each dimension is some e-mail attribute
- Output: $y (\text{spam / not spam?}) \rightarrow \text{the decision that we have to take in the end}$
- Target function: $f: \mathcal{X} \to \mathcal{Y}$ (Ideal spam filter formula) \to unknown, we have to learn it
- Data: $\mathcal{D} = \{(x(1), y(1)), \dots, (x(N), y(N))\}$ (historical records of e-mail examples)
 - ✓ Each feature vector x consists of different regressors or features, i.e. information used to predict the output variable
- Hypothesis: $g: \mathcal{X} \to \mathcal{Y}, g \in \mathcal{H}$ (formula to be used) $\to g$ is an **approximation** of f

${\mathcal H}$ is called the ${\bf Hypothesis}\ {\bf space}.$ This, together with the ${\bf Learning}\ {\bf algorithm},$ form the ${\bf learning}\ {\bf model}$

Supervised learning

- The "correct answer" (output label) y is given
- Predict y from a set of inputs $x \in \mathbb{R}^{d \times 1}$
- **Regression:** predict a continuous output $y \in \mathbb{R}$ (real value)
- **Classification:** predict a discrete categorical output $y \in \{1, 2, ..., C\}$ (class)

Example: house prices regression Single feature x₃

Suppose we want to find a linear function which relates the measured regressors x₁, x₂, x₃, x₄ with the **observed** output y
 Output

	Size $[feet^2]$	Number of bedrooms	Number of floors	Age of home [year]	Price [\$] Variable y
	2104	5	1	45	$4.60\cdot 10^5$
s N	1416	3	2	40	$2.32\cdot 10^5$
ion	1534	2	1	30	$3.15\cdot 10^5$
vat	:	:	:		
Isc	\downarrow	\downarrow	\downarrow	\downarrow	Single observation
ŏ	x_1	x_2	x_3	x_4	$\frac{y}{y}$ (feature vector) x

- The number of rows is the number of data points (also known as number of observations) N
- The *i*-th observation is the vector $\mathbf{x}(i) = [x_1(i) \ x_2(i) \ x_3(i) \ x_4(i)]^T \in \mathbb{R}^{4x_1}$
- Each feature vector x has associated a response $y \in \mathbb{R}$ that we want to predict for new observations x^*

Number of

Example: house prices classification

- The components of the features vector are the same. The difference lies in the response variable, which now is a **class** (categorical data type) and not a real value
- Suppose that instead of the price value in dollars, we want to classify houses as **expensive** (class y = 1) or **cheap** (class y = 0)

Size $[feet^2]$	Number of bedrooms	Number of floors	Age of home $\left[\mathrm{year}\right]$	Price [class]
2104	5	1	45	1
1416	3	2	40	0
1534	2	1	30	1
÷	:	:	:	÷
\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
x_1	x_2	x_3	x_4	$ \qquad y$

• The point x could be classified to class y = 1 if the probability of x to belong to class 1 is ≥ 0.5

Unsupervised learning

- Instead of (input, output) we get (input, ?)
- Here there is no a function *f* to learn
- Find properties of the inputs $x \in \mathbb{R}^{d \times 1}$
- High-level representation of the input
- Elements into the same cluster have similar properties

UNIT DEG DI B

Reinforcement learning

- Instead of (input, output) we get (input, output, reward)
- The algorithm tries to learn what action to take, in order to maximize the reward
- This is called a policy
- Applications in control, robotics, A/B testing

Business problems as data science examples - revisited

Supervised

Unsupervised

- Spam e-mail detection system
 Classification
- Credit approval Classification
- Recognize objects in images **Classification**
- Find the relation between house prices and house sizes **Regression**
- Predict the stock market Regression

- Market segmentation Clustering
- Language models (word2vec)
 Similarity matching

Social network analysis Link

Data reduction

- Low-order data representations
- Movies recommendation

Similaritiy matching

Supervised or unsupervised

Supervised learning: problem statement

The aim is to **learn an unknown function** f given a dataset \mathcal{D}

- The function is searched in the hypothesis space \mathcal{H} , where $h \in \mathcal{H}$ is a specific function
- We want to find a function h that approximates f well, on the **whole domain** \mathcal{X}

What does $h \approx f$ mean?

- We need to define an error measure
- Almost always this is a **pointwise** definition: e(f(x), h(x))

Cost functions

Pointwise error examples

- Squared error: $e(f(x), h(x)) = (f(x) h(x))^2 \rightarrow \text{used for regression}$
- Binary error: $e(f(x), h(x)) = \mathbb{I}[f(x) \neq h(x)] \rightarrow \text{used for classification}$

It is interesting to look at the **overall error**, which considers all *N* examples:

Overall error examples

- In-sample error: $E_{in} = \frac{1}{N} \sum_{i=1}^{N} e(f(\mathbf{x}), h(\mathbf{x})) \rightarrow$ error on data that I actually have
- Out-of-sample error: $E_{out} = \mathbb{E}_x[e(f(x), h(x))] \rightarrow \text{error on data I could possibly observe}$

Outline

1. Components of learning

2. Linear regression

3. Least squares

4. Gradient descent

À | Dipartimento
 Di | di Ingegneria Gestionale,
 O | dell'Informazione e della Produzione

Linear regression

Aim: Suppose to have at disposal a dataset $\mathcal{D} = \{(x(1), y(1)), ..., (x(N), y(N))\}$. Find the relation between a set of input variables $x \in \mathbb{R}^{(d-1)\times 1}$ and an output variable $y \in \mathbb{R}$, using

- The vector θ is called **parameters vector** \rightarrow to be found by minimizing a cost function
- The vector x(i) is called **features vector** for *i*-th observation \rightarrow attributes of individuals
- The quantity $\epsilon(i)$ is the error due not perfect explanation of the y(i) using x(i)

Geometrical interpretation

One-variable case

In this case, there is only **one feature** x_1 and **two parameters** θ_0, θ_1

 $y(i) = \theta_0 + \theta_1 x_1(i) + \epsilon(i)$

Two-variables case

In this case, there are **two features** $x_{1,}x_{2}$ and **three parameters** $\theta_{0}, \theta_{1}, \theta_{2}$

$$y(i) = \theta_0 + \theta_1 x_1(i) + \theta_2 x_2 + \epsilon(i)$$

Outline

1. Components of learning

2. Linear regression

3. Least squares

4. Gradient descent

À Dipartimento
 DI di Ingegneria Gestionale,
 dell'Informazione e della Produzione

Least squares cost function

How well does $h(x) = x^T \theta$ approximates f(x)?

 Linear regression estimates the parameters θ using the least squares method, i.e. by minimizing the squared error between observed and predicted output

Cost function - minimization

$$J(\boldsymbol{\theta}) = E_{in}(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} (\boldsymbol{y(i)} - \boldsymbol{x(i)}^T \boldsymbol{\theta})^2$$

- Since the model is linear in the parameters and the error measure is quadratic, the cost function is convex → it admits a unique (global) minimum
- In this case the minimum can be found in **closed-form**

Least squares cost function – matrix form

We can express the linear regression problem using matrices Features vector $x^{T}(i)$ $X = \begin{bmatrix} 1 & x_1(1) & x_2(1) & \cdots & x_{d-1}(1) \\ 1 & x_1(2) & x_2(2) & & x_{d-1}(2) \\ \vdots & \vdots & & \ddots & \vdots \\ 1 & x_1(N) & x_2(N) & \cdots & x_{d-1}(N) \end{bmatrix} \quad \boldsymbol{\theta} = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \vdots \\ \theta_{d-1} \end{bmatrix} \quad \begin{array}{c} Y = \begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ N \times 1 \end{bmatrix} \quad \begin{array}{c} E \\ E \\ y(N) \end{bmatrix} \quad \begin{array}{c} \varepsilon(1) \\ \varepsilon(2) \\ \vdots \\ \varepsilon(N) \end{bmatrix}$ $\Gamma = T (1) T$

$$X_{N \times d} = \begin{bmatrix} \mathbf{x}^{T} (1) \\ \mathbf{x}^{T} (2) \\ \vdots \\ \mathbf{x}^{T} (N) \end{bmatrix} \qquad Y = X\mathbf{\theta} + E \Rightarrow \begin{bmatrix} J(\mathbf{\theta}) = \frac{1}{N} \|Y - X\mathbf{\theta}\|_{2}^{2} = \frac{1}{N} (Y - X\mathbf{\theta})^{T} (Y - X\mathbf{\theta}) \\ 1 \times N \end{bmatrix}$$

A | Dipartimento
 di Ingegneria Gestionale,
 dell'Informazione e della Produzione

Least squares cost function – matrix form

It is useful to remember these matrix derivation properties:

 $\nabla_{\mathbf{x}}(\mathbf{x}^T \cdot A \cdot \mathbf{x}) = (A + A^T) \cdot \mathbf{x}$ 1×d d×d d×1 d×d d×1 $\nabla_{\mathbf{x}}(\mathbf{x}^T \cdot \mathbf{b}) = \mathbf{b}$ 1×d d×1 d×1 d×1 d×1 $1 \times d \quad d \times 1 \quad d \times 1$ $J(\boldsymbol{\theta}) = \frac{1}{N} (Y - X\boldsymbol{\theta})^T (Y - X\boldsymbol{\theta}) = \frac{1}{N} (Y^T Y - Y^T X \cdot \boldsymbol{\theta}_{1 \times N N \times d d \times 1} - \boldsymbol{\theta}^T \cdot X^T Y + \boldsymbol{\theta}^T \cdot X^T X \cdot \boldsymbol{\theta})$ $= \frac{1}{M} (Y^T Y - 2 \cdot \boldsymbol{\theta}^T \cdot X^T Y + \boldsymbol{\theta}^T \cdot X^T X \cdot \boldsymbol{\theta})$ $\nabla J(\boldsymbol{\theta}) = \mathbf{0} \Rightarrow \frac{1}{N} (-2X^T Y + 2X^T X \boldsymbol{\theta}) = \mathbf{0} \Rightarrow \qquad \widehat{\boldsymbol{\theta}} = (X^T X)^{-1} X^T Y$

Normal equations

$$\widehat{\boldsymbol{\theta}} = (X^T X)^{-1} X^T Y$$
 Normal equations

What if the matrix $X^T X$ is **not invertible**? \longrightarrow Use **pseudo-inverse**. In MatLab:

- Redundant features (linearly dependent)
 - $\checkmark x_1 = \text{height in m}^2$
 - ✓ x_2 = height in feet²
- Too many features (ex. $N \leq d$)
 - ✓ Delete some feature
 - \checkmark Use regularization (later in the course)

theta hat = pinv(X' * X) * X * y

- The method of normal equations is
 slow if d is very large
 - $\checkmark~$ To solve this, iterative methods
 - using gradient descent can be

used

Outline

1. Components of learning

2. Linear regression

3. Least squares

4. Gradient descent

Gradient descent

• The **gradient descent** is a general iterative method for minimizing differentiable functions

• The value of the parameters at iteration t + 1 is (given a random initial point $\hat{\theta}(0)$)

$$\widehat{\boldsymbol{\theta}}(t+1) = \widehat{\boldsymbol{\theta}}(t) - \alpha \cdot \nabla J(\boldsymbol{\theta}) \Big|_{\boldsymbol{\theta} = \widehat{\boldsymbol{\theta}}(t)}$$

 $\alpha \in \mathbb{R}_{>0}$: learning rate

di Ingegneria Gestionale, di Ingegneria Gestionale, dell'Informazione e della Produzione

Gradient descent

Consider the **scalar** case where $\theta \in \mathbb{R}$

$$\hat{\theta}(t+1) = \hat{\theta}(t) - \alpha \nabla J(\theta) \Big|_{\theta = \hat{\theta}(t)}$$

•
$$\nabla J(\theta)|_{\theta=\widehat{\theta}(t)} > 0 \Rightarrow \widehat{\theta}(t+1) < \widehat{\theta}(t)$$

The new estimate is closer to the optimal value θ^*

Gradient descent

Consider the **scalar** case where $\theta \in \mathbb{R}$

$$\hat{\theta}(t+1) = \hat{\theta}(t) - \alpha \nabla J(\theta) \Big|_{\theta = \hat{\theta}(t)}$$

•
$$\nabla J(\theta)|_{\theta=\widehat{\theta}(t)} < 0 \Rightarrow \widehat{\theta}(t+1) > \widehat{\theta}(t)$$

The new estimate is closer to the optimal value θ^*

Linear regression laboratory: predict house prices

Т

We want to **predict the price** of the houses in Portland, Oregon

- Each house is described by the following features
 ✓ x₁: Number of **bedrooms** ✓ x₂: Size [feet²]
- The **training set** consists of N = 47 houses with $x_1(i), x_2(i)$ and y(i), for i = 1, ..., N

$$y(i) = \mathbf{x}(i)^{T} \boldsymbol{\theta} + \epsilon(i) \qquad \mathbf{x}(i) = \begin{bmatrix} 1 & x_{1}(i) & x_{2}(i) \end{bmatrix}$$
$$X = \begin{bmatrix} \mathbf{x}^{T}(1) \\ \mathbf{x}^{T}(2) \\ \vdots \\ \mathbf{x}^{T}(N) \end{bmatrix} \qquad \boldsymbol{\theta} = \begin{bmatrix} \theta_{0} \\ \theta_{1} \\ \theta_{2} \end{bmatrix} \qquad Y = \begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ 47 \times 1 \end{bmatrix} \begin{bmatrix} y(1) \\ y(2) \\ \vdots \\ y(47) \end{bmatrix}$$

```
% Read data from file
data = csvread(`housedata.txt');
X = data(:, 1:2); % Features
y = data(:, 3); % Price
N = length(y); % Number of data
```

```
% Add intercept term to X
X = [ones(N, 1) X];
```

```
% Calculate the parameters from
the normal equation
theta_hat = pinv(X'*X)*X'*y;
% Estimate the price of a 1650
sq-ft, 3 br house
price_hat = [1 3 1650]*theta_hat;
Point not seen during training (i.e. estimation of 0)
```

