

UNIVERSITÀ DEGLI STUDI DI BERGAMO

Data Science and Automation

Lesson 17 PLC - Introduction

University of Bergamo, Data Science and Automation, a.a. 2019-2020

Who am I?

Andrea Bombarda

I'm a first year PhD student at the University of Bergamo (Formal Methods & Software Engineering Lab)

Tel. 035 2052022

andrea.bombarda@unibg.it https://cs.unibg.it/bombarda/

Lessons and Lab

- 16 hours of «standard» lectures
- 12 hours of «lab»
 - I will introduce the main aspects of the SW that we can use to simulate a PLC on a regular PC
 - I will give you some exercices that you can solve using the PLC simulator, and we will analyze togheter the solutions

Topics

- Introduction to the Industrial Automation
- PLC
 - Introduction
 - Languages ot the IEC 61131 norm
 - Ladder
 - SFC
 - Structured Text

Introduction to the Industrial Automation

What does «automation» stands for...

(From Garzanti): «The introduction of mechanical production processes, mainly driven by electronic systems, in which the manual intervention of man is reduced to a minimum»

(From Treccani): «The use of a set of technical means and procedures which, acting suitably on particular devices or devices, ensure the automatic performance of a specific process, the automatic operation of an industrial plant, a public service, etc .;»

Why?

We introduce the industrial automation because it allows us to:

- Reduce production times and expenses
- Increase production quantities
- Increase the quality of a product
- Increase the flexibility of production plants
- Produce using the "Just in Time" technique (and reduce the size of the warehouse)

University of Bergamo, Data Science and Automation, a.a. 2019-2020

Some videos

Ford production line:

https://www.youtube.com/watch?v=mBUFD3C YXI&t=605s

Industry 4.0:

https://www.youtube.com/watch?v=9jWH1YahNIY

Which topics are involved?

First generation of controllers (1950):

- Controllers build with relè, coils, timers
- Slow computation
- Not adaptable (no flexibility)

Second generation of controllers (1960):

- Use of semiconductors
- Better performances
- Increase of the price
- Limited flexibility: the controllers were not programmable

Third generation of controllers (1960):

- Use of microprocessors
- The controllers are programmable
- The first PLC (Alleb Bradley 1968) was introduced

Centralized control (1960-1980):

First scalable solutions (1980-1990):

• First uses of Real-Time legacy network (Fieldbus)

Integration between plant and different levels (2000 ->):

Introduction of Real-Time networks based on Ethernet

An example of the present Architecture

University of Bergamo, Data Science and Automation, a.a. 2019-2020

- **Enterprise Resource Planning**
- It is the company information system, including:
- Accounting
- Management control
- Management of:
 - Staff
 - Purchase
 - Warehouse
 - Production
 - Sales

Manufacturing Execution System

It is a software to schedule the production, the orders and monitor:

- Production
- Order status
- Production timing

<u>SCADA</u>

It is the system used to control and monitor the production line (including the Human Machine Interface). It's composed of:

- Production line control
- Data acquisition
- Data analysis
- Alarms management
- Data logging

Interaction between automation and plant

Conceptual scheme

PLC – Programmable Logic Controller

CNC – Computer Numerical Control

Inverter / Actuators / ...

Interaction between automation and plant

Remarks:

- A single PLC can be used for a single machine, or more PLCs can be used for a single machine
- CNC operations can also be embedded into the PLC or in multi-axis inverters
- CNC me not be used in many cases
- For small plants, the PLC may do also the modulating control

Types of control

Modulating Control:

- Continuous
- Continuous control actions
- Modeled by differential equations

Logical Control:

- Event-based
- Discrete control actions
- Modeled by Petri Net or Finite State Automata

We will focus on this kind of control

 $\frac{\text{Inputs}}{w_{in}(t)}$ $w_{out}(t) \text{ (not adjustable)}$

 $\frac{Output}{h(t)}$

<u>Model</u>

$$A \cdot \frac{dh(t)}{dt} = w_{in}(t) - w_{out}(t)$$

Logical control:

- Let's consider $w_{in}(t)$ as ON or OFF.
- We can suppose that we want to keep h between h_{min} and h_{max} .

A simple control code can be:

```
if (h(t)>=h_max) {
    w_in(t) = OFF;
}
if (h(t)<=h_min) {
    w_in(t) = ON;
}</pre>
```


University of Bergamo, Data Science and Automation, a.a. 2019-2020

Logical control:

The same kind of control can be represented by a finite state automaton as follows:

A finite state automata (with inputs and outputs) is a t-uple (U, X, Y, f, h, x_0) where:

- $U = \{u_1, u_2, u_3, ...\}$ is the set of the *input events*
- $X = \{x_1, x_2, x_3, ...\}$ is the *finite* set of the *states*
- *Y* is the *finite* set of the *outputs*
- $f: X \times U \rightarrow X$ is the transition function
- $h: X \times U \rightarrow Y$ is the *output update function*
- x_0 is the *initial state*

Considering the previous example, we have:

•
$$U = \{h \ge h_{max}, h \le h_{min}\}$$

•
$$X = \{1, 2\}$$

•
$$Y = \{ON, OFF\}$$

•
$$x_0 = 1$$

$f(\cdot,\cdot):X\times U\to X$

	$h \ge h_{max}$	$h \le h_{min}$	
1	2	-	
2	-	1	

University of Bergamo, Data Science and Automation, a.a. 2019-2020

$h(\cdot,\cdot):X\times U\to Y$

	$h \ge h_{max}$	h_{max} $h \le h_{min}$	
1	OFF	ON	
2	OFF	ON	

Remarks:

• The output can be update also during the transition.

• Some inputs may not update the status.

Our system executes the following activities:

- Load a piece on M1 by using R1
- M1 process the piece
- Unload a piece from M1 by using R3

The production line starts when Start = 1 and terminates when $R3_{finish} = 1$.

•
$$U = \{Start, R1_{finish}, M1_{finish}, R3_{finish}\}$$

•
$$Y = \{R1_{start}, M1_{start}, R3_{start}\}$$

Alternative representation

	Start == 1	$R1_{finish} == 1$	$M1_{finish} == 1$	$R3_{finish} == 1$	Y
1	2	-	-	-	$R1_{start} = 1$
2	-	3	-	-	$M1_{start} = 1;$ $R1_{start} = 0$
3	-	-	4	-	$R3_{start} = 1;$ $M1_{start} = 0$
4	-	-	-	1	$R3_{start} = 0$

Remarks:

 In this case we don't have the function h: X×U → Y because we do not vary the output when we are in a state, but only during a transition.