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Model-based fault diagnosis
A model of the system is developed to design a residual generator 𝑸 𝑧
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Modeling a plant with faults
A modeling scheme for fault diagnosis considers the following external inputs:

• 𝒚 𝑡 : plant outputs (measureable)

• 𝒖 𝑡 : plant inputs (measureable)

• 𝒅 𝑡 : disturbance inputs (not measureable)

• 𝒘 𝑡 : noise inputs (not measureable)

• Disturbances: include unknown uncontrollable inputs (wind shears, crosswinds, load variations)

✓ If the transfer function from 𝒅 to 𝒚 is known, their effect on 𝒚 can be completely rejected

• Noises: include uncertainties such as random noises or parametric model uncertainties

✓ They can only be attenuated up to a certain extent

PlantPlant
Control 
inputs

Plant
outputs

Faults Noise
inputs

Disturbance
inputs

𝒚 𝑡𝒖 𝑡

𝒇 𝑡 𝒘 𝑡 𝒅 𝑡
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Faults can be classified based on their location (physical classification)...

ProcessProcess SensorsSensorsActuatorsActuators

Actuator
faults

Process
faults

Sensor 
faults

Plant

• Actuator faults: a change in the characteristics of an actuator leading to a loss of

efficiency or even to a complete breakdown (jamming, runaway, floating, loss of effectiveness)

• Sensor faults: erroneous measurements obtained with a defective sensor (freezing,

drift, bias, loss of accuracy )

• Process faults: malfunction of an

internal component due to excessive

variation of some physical parameter

(structural damage, leakage, shortcut)

Classification of fault types
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…or based on how it is possible to model their effect on the system:

• Additive faults: fault modelled as a fictive input 𝑓, which acts independently on the plant

inputs and outputs. The case 𝑓 = 0 corresponds to the fault-free case. (some types of actuator

faults (jamming, runaway, oscillatory fault case), some types of sensor faults (bias, drift), operational

wear and tear)

• Parametric faults: fault whose effects on the plant depend on the magnitude of some

internal signals or known inputs. (parametric faults, some types of actuator faults (loss of

efficiency, disconnection, stall load)

The classification is important to adopt the correct modeling and diagnosis technique

Classification of fault types
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Dynamical systems
A system (physical object that accepts inputs and produces outputs) is said to be

dynamical if the output 𝑦(𝑡) at a certain time 𝑡 does not depend only of the input 𝑢(𝑡)

at the same time 𝑡, but also on the initial system condition 𝒙 0 .

• In an electromechanical motor, the relation between the motor current and the motor speed

can be described by a dynamical model

• The force generated by a skeletal muscle contraction will depend by the viscous damping

given by the tissue and on the elastic storage properties by the sarcolemma and tendons

• Flow equation of blood through the vessels depend on pressures dynamics

An example of static system is the resistor: 𝑖 𝑡 = Δ𝑉 𝑡 /𝑅,

𝑖(𝑡) = current in the resistor [A], Δ𝑉 𝑡 = voltage drop on the resistor V , 𝑅 = resistance [Ω].

Automatica (6 cfu) 2° year Management Engineering
Fondamenti di automatica (9 cfu) 2° year Computer Eng.
Dynamic systems identification (9 cfu) 1° year EMH
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Mathematical models of dynamical systems
A dynamical model is mathematical object that can be used to analyze the behavior of 

a dynamical system

Tipically they are represented using a  set of equations that explain the relation 

between the variables involved in the phenomenon, i.e. how the variables evolve in time

Models represent only a simplified version of the real phenomenon:

• «All models are wrong, but some are useful»

There are different types of dynamical models:

• Linear \ nonlinear • Time invariant \ time variant • Continuous \ discrete time
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Example 1: Infectious disease
We want to model the number of people infected with a contagious disease

Suppose to measure the number of infected people one time every day (sampling time)

Let’s define as 𝐼 𝑡 the number of infected people at day 𝑡 ∈ ℕ>0 (discrete-time case)

• 𝜆 is the disease spreading rate (the higher 𝜆, the faster the spreading. If negative, the 
epidemic subsides)

𝐼 𝑡 + 1 = 𝐼 𝑡 + 𝜆 ⋅ 𝐼 𝑡

The number of infected people at a certain day depends on the number of infected in the 

previous day The  dynamical system has a «memory» property

𝑡 is a multiple of the
sampling period 𝑇𝑠

Difference between new
infected and deaths\recovered
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Example 1: Simulation
In order to analyze the phenomena, we can simulate the model. To simulate this model we 

have to know the initial value of infected people

The number of infected people at a certain day depends on the number of infected in the 

previous day The  dynamical system has a «memory» property

I(1) = 1;

T = 20; lambda = 0.1;

for t = 2 : 1 : T

I(t) = I(t-1) + lambda*I(t-1);

end

Initial condition
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Example 1: Simulation

Different rates 𝜆, 𝐼 0 = 1 Different initial conditions 𝐼 0

𝜆 = 0.1

𝜆 = 0.1

𝜆 = −0.1

𝐼 0 = 100

𝐼 0 = 20
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Example 1: Assumptions
The previous model is a simplified version of the phenomenon. It represents reality up to 

a certain extent

If we want to relax these assumptions, and more closely mimic reality, we need a more 

complex model

A lot of assumptions are used, for example:

• The are infinite infectable people

• The number of people is a real number

𝐼 𝑡 + 1 = 𝐼 𝑡 + 𝜆 ⋅ 𝐼 𝑡



/10215

Example 2: SIR
The SIR (Susceptible, Infected, Recovered) model is vastly used to model the dynamics 

of an epidemic 

• 𝜎: disease spreading rate, ∈ [0,1]

• 𝜌: recovery rate, ∈ [0,1]

𝑆 𝑡 + 1 = 𝑆 𝑡 − 𝜎 ⋅ 𝑆 𝑡 ⋅ 𝐼 𝑡
𝐼 𝑡 + 1 = 𝐼 𝑡 + 𝜎 ⋅ 𝑆 𝑡 ⋅ 𝐼 𝑡 − 𝜌 ⋅ 𝐼 𝑡
𝑅 𝑡 + 1 = 𝑅 𝑡 + 𝜌 ⋅ 𝐼 𝑡

• 𝑆 𝑡 : number of people that are susceptible to the disease

• 𝐼 𝑡 : number of infected people

• 𝑅 𝑡 : number of people that recover for the disease and are not susceptible anymore

A proportion 𝜌 of the infected
people recovers☺

Each infected person will infect a
proportion 𝜎 of the susceptible people
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Δ𝐼 𝑡 + 1 = 𝐼 𝑡
𝜎

𝜌
𝑆 𝑡 − 1 𝜌

16

Example 2: SIR

𝑆 𝑡 + 1 = 𝑆 𝑡 − 𝜎 ⋅ 𝑆 𝑡 ⋅ 𝐼 𝑡
𝐼 𝑡 + 1 = 𝐼 𝑡 + 𝜎 ⋅ 𝑆 𝑡 ⋅ 𝐼 𝑡 − 𝜌 ⋅ 𝐼 𝑡
𝑅 𝑡 + 1 = 𝑅 𝑡 + 𝜌 ⋅ 𝐼 𝑡

• Δ𝐼 𝑡 + 1 > 0 IF 𝑅0 >
1

𝑆 𝑡

Δ𝑆 𝑡 + 1 = −𝜎 ⋅ 𝑆 𝑡 ⋅ 𝐼 𝑡
Δ𝐼 𝑡 + 1 = 𝜎 ⋅ 𝑆 𝑡 ⋅ 𝐼 𝑡 − 𝜌 ⋅ 𝐼 𝑡
Δ𝑅 𝑡 + 1 = 𝜌 ⋅ 𝐼 𝑡

Δ𝑆 𝑡 + 1 = 𝑆 𝑡 + 1 − 𝑆 𝑡

Δ𝐼 𝑡 + 1 = 𝜎𝑆 𝑡 𝐼 𝑡 − 𝜌𝐼 𝑡

• Δ𝐼 𝑡 + 1 < 0 IF 𝑅0 <
1

𝑆 𝑡

Given 𝐼 𝑡 > 0: Δ𝐼 𝑡 = 0 if:

• 𝑅0 =
1

𝑆 𝑡

• 𝐼 𝑡 = 0

Basic reproduction ratio 𝑹𝟎 = 𝜎/𝜌

Expected number of new infections from a single

infection in a population where all subjects are

susceptible

= 𝐼 𝑡 𝑹𝟎 ⋅ 𝑆 𝑡 − 1 𝜌
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Example 2: Simulation
In order to analyze the phenomena, we can simulate the model

sigma = 0.01;

rho = 0.1;

T = 50;

S(1) = 99.9;

I(1) = 0.1;

R(1) = 0;

for t = 2 : 1 : T

S(t) = S(t-1) - sigma * S(t-1)*I(t-1);

I(t) = I(t-1) + sigma * S(t-1)*I(t-1) - rho * I(t-1);

R(t) = R(t-1) + rho * I(t-1);

end
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Example 1: Simulation
Population size: 𝟏𝟎𝟎, 𝝈 = 𝟎. 𝟎𝟏, 𝝆 = 𝟎. 𝟏

𝑡∗ ≈ 9.36

𝑅0 =
𝜎

𝜌
= 0.1

1

𝑆 𝑡∗
= 𝑅0

𝑡 > 𝑡∗

𝑅0 <
1

𝑆 𝑡
→ Δ𝐼 𝑡 + 1 < 0

Decrease in 
the infected

𝑡 < 𝑡∗

𝑅0 >
1

𝑆 𝑡
→ Δ𝐼 𝑡 + 1 > 0

Increase in the 
infected
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Example 1: Simulation
Population size: 𝟏𝟎𝟎, Different 𝝈, 𝝆 = 𝟎. 𝟏

𝜎 ↓ «Flatten the curve»
By decreasing the
infection rate

Population size: 𝟏𝟎𝟎, Different 𝝆, 𝝈 = 𝟎. 𝟎𝟏

𝜌 ↑

Higher recovery
rates lead to
lower infections

This could be denote the maximum
capacity of the sanitary system
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Example 2: Assumptions
The previous model presents the following assumptions:

This model can be used to model the seasonal flu outbreak

• The number of persons is a real number

• The death/birth rate is slower than the infectious disease

• Everyone can recover (or die) from the disease

It is possible to augment the model with exogenous variables (Inputs) that vary 

independently from the model dynamics. 

The inputs will affect the system behaviour and are usually known signals
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Example 3: SIR with vaccination
Let’s define as 𝑉 𝑡 the percentage of susceptible people that get vaccinated at the 

day 𝑡.

𝑆 𝑡 + 1 = 𝑆 𝑡 − 𝜎 ⋅ 𝑆 𝑡 ⋅ 𝐼 𝑡 − 𝑉(𝑡) ⋅ 𝑆(𝑡)
𝐼 𝑡 + 1 = 𝐼 𝑡 + 𝜎 ⋅ 𝑆 𝑡 ⋅ 𝐼 𝑡 − 𝜌 ⋅ 𝐼 𝑡
𝑅 𝑡 + 1 = 𝑅 𝑡 + 𝜌 ⋅ 𝐼 𝑡 + 𝑉(𝑡) ⋅ 𝑆(𝑡)

• 𝑆 𝑡 : number of people that are susceptible to the disease

• 𝐼 𝑡 : number of infected people

• 𝑅 𝑡 : number of people that recover for the disease and are not susceptible anymore

• 𝑉 𝑡 : is an arbitrary signal that perturbs the behavior of the model

• 𝜎: disease spreading rate, ∈ [0,1]

• 𝜌: recovery rate, ∈ [0,1]
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Example 3: Simulation
Population size: 𝟏𝟎𝟎, 𝝈 = 𝟎. 𝟎𝟏, 𝝆 = 𝟎. 𝟏

No vaccination input
Population size: 𝟏𝟎𝟎, 𝝈 = 𝟎. 𝟎𝟏, 𝝆 = 𝟎. 𝟏

With vaccination input
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Latent variables (state variables)
Usually, the system variables are not directly measurable. Thus, we can add an output 

equation, which specifies what we can actually measure. 

𝑆 𝑡 + 1 = 𝑆 𝑡 − 𝜎 ⋅ 𝑆 𝑡 ⋅ 𝐼 𝑡 − 𝑉(𝑡) ⋅ 𝑆(𝑡)
𝐼 𝑡 + 1 = 𝐼 𝑡 + 𝜎 ⋅ 𝑆 𝑡 ⋅ 𝐼 𝑡 − 𝜌 ⋅ 𝐼 𝑡
𝑅 𝑡 + 1 = 𝑅 𝑡 + 𝜌 ⋅ 𝐼 𝑡 + 𝑉(𝑡) ⋅ 𝑆(𝑡)

𝑌 𝑡 = 𝛼𝐼 𝑡 − 𝛽 𝑆 𝑡 + 𝑅 𝑡

• 𝛼: rate of reported cases, ∈ [0,1]

• 𝛽: rate of diagnosis errors, ∈ [0,1]

Suppose that some authority communicates the number of infected people 𝑌 𝑡

The output model is a static equation

The output at time 𝑡 can be computed using only information up to time 𝑡, and depends 

on the state variables 𝑆 𝑡 , 𝐼 𝑡 , 𝑅 𝑡 (the model dynamics)
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Example 4: Simulation

• Population size: 𝟏𝟎𝟎

• 𝝈 = 𝟎. 𝟎𝟏, 𝝆 = 𝟎. 𝟏, 𝜶 = 𝟎. 𝟖, 𝜷 = 𝟎. 𝟎𝟓

• No vaccination input

The output mimic the infected

latent state variable 𝐼 𝑡 , up to a

certain measurement error
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• 𝒙 𝑡 =
𝑆 𝑡
𝐼 𝑡
𝑅 𝑡

25

General representation
In general, a discrete-time dynamical system can be written as:

• 𝒙 𝑡 ∈ ℝ𝑛×1 are the states or latent variables

• 𝒚 𝑡 ∈ ℝ𝑝×1are the outputs or measurements

• 𝒖 𝑡 ∈ ℝ𝑚𝑢×1 are the inputs or exogenous variables

• 𝒇 ⋅,⋅ ∈ ℝ𝑛×1 is the process function

• 𝒈 ⋅,⋅ ∈ ℝ𝑝×1is the output function

𝒚 𝑡 = 𝒈 𝒙 𝑡 , 𝒖 𝑡

𝒙 𝑡 + 1 = 𝒇 𝒙 𝑡 , 𝒖 𝑡

• 𝒚 𝑡 = 𝑌 𝑡

• 𝒖 𝑡 = 𝑉 𝑡 • 𝒇 𝒙 𝑡 , 𝒖 𝑡 =

𝑆 𝑡 − 𝜎 ⋅ 𝑆 𝑡 ⋅ 𝐼 𝑡 − 𝑉 𝑡 ⋅ 𝑆(𝑡)

𝐼 𝑡 + 𝜎 ⋅ 𝑆 𝑡 ⋅ 𝐼 𝑡 − 𝜌 ⋅ 𝐼 𝑡

𝑅 𝑡 + 𝜌 ⋅ 𝐼 𝑡 + 𝑉 𝑡 ⋅ 𝑆(𝑡)

SIR dynamical system example

• 𝒈 𝒙 𝑡 , 𝒖 𝑡 = 𝛼 ⋅ 𝐼 𝑡 + 𝛽 ⋅ 𝑆 𝑡 + 𝑅 𝑡
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Linear systems: general representation
When 𝒇 and 𝒈 are linear functions of the states 𝒙 𝑡 and the inputs 𝒖 𝑡 , we talk of Linear 

dynamical systems (we consider the discrete-time case)

𝐴 =

𝑎1,1 ⋯ 𝑎1,𝑛
⋮ ⋱ ⋮

𝑎𝑛,1 ⋯ 𝑎𝑛,𝑛
∈ ℝ𝑛×𝑛 𝐵 =

𝑏1,1 𝑏1,𝑚𝑢

⋮
𝑏𝑛,1 𝑏𝑛,𝑚𝑢

∈ ℝ𝑛×𝑚𝑢

𝐶 =

𝑐1,1

𝑐𝑝,1

⋯ 𝑐𝑛

𝑐𝑝,𝑝
∈ ℝ𝑝×𝑛 𝐷 =

𝑑1,1

𝑑𝑝,1

⋯ 𝑑1,𝑚𝑢

𝑑𝑝,𝑚𝑢

∈ ℝ𝑝×𝑚𝑢

ቐ
𝒙 𝑡 + 1 = 𝐴 ⋅ 𝒙 𝑡 + 𝐵 ⋅ 𝒖 𝑡

𝒚 𝑡 = 𝐶 ⋅ 𝒙 𝑡 + 𝐷 ⋅ 𝒖 𝑡

൞

𝑥1 𝑡 + 1 = 0.5 ⋅ 𝑥1 𝑡 + 𝑥2 𝑡 + 3 ⋅ 𝑢 𝑡

𝑥2 𝑡 + 1 = 0.1 ⋅ 𝑥2 𝑡

𝑦 𝑡 = 𝑥1 𝑡 + 3 ⋅ 𝑥2 𝑡 + 5 ⋅ 𝑢 𝑡

𝐴 =
0.5 1
0 0.1

∈ ℝ2×2 𝐵 =
3
0

∈ ℝ2×1

𝐶 = 1 3 ∈ ℝ1×2 𝐷 = 5 ∈ ℝ

Example (SISO system 𝑝 = 1,𝑚𝑢 = 1)
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Z-transform
Given a discrete signal 𝑠 𝑡 : ℤ+ → ℝ the 𝑍 −transform is the polynomial:

𝒵 𝑠 𝑧 = 𝑆 𝑧 ≡

𝑡=0

∞

𝑠 𝑡 ⋅ 𝑧−𝑡 = 𝑠 0 + 𝑠 1 𝑧−1 +⋯ • 𝑧 ∈ ℂ is a complex number

If the series converges (for inputs s.t. 𝑠 𝑡 = 0, ∀𝑡 < 0, this is always true), then 𝑆 𝑧 can be 

espressed as

𝑆 𝑧 =
𝑁 𝑧

𝐷 𝑧

where 𝑁 𝑧 and 𝐷 𝑧 are finite degree polynomials
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Delay
Given a signal 𝑠 𝑡 , then the signal 𝑤 𝑡 = 𝑠 𝑡 − 1 has 𝑍-transform:

𝒵 𝑤 𝑧 = 𝑊 𝑧 =

𝑡=0

∞

𝑤 𝑡 ⋅ 𝑧−𝑡 = 𝑤 0 + 𝑤 1 𝑧−1 +𝑤 2 𝑧−2 +⋯

= 𝑧−1⋅ 𝑆 𝑧

= 𝑠 −1 + 𝑠 0 𝑧−1 + 𝑠 1 𝑧−2 +⋯

= 0 + 𝑧−1 ⋅ 𝑠 0 + 𝑠 1 𝑧−1 +⋯

= 𝑧−1 ⋅

𝑡=0

∞

𝑠 𝑡 ⋅ 𝑧−𝑡

We can interpret 𝑧−1 has a delay operator (and 𝑧 as a forward operator)



/10229

Linear systems: transfer function
Consider a SISO system. The transfer function 𝐺 𝑧 describes the relation between the 

input and output of a LTI (linear time invariant) dynamical system, when 𝒙 0 = 0

𝐺 𝑧
𝑢 𝑡 𝑦 𝑡

In a SISO system, it is possible to express 𝐺 𝑧 as the ratio between the 𝑍-transform of 

the input signal and the 𝑍-transform of the output signal

𝐺 𝑧 =
𝒵 𝑦 z

𝒵 𝑢 𝑧
=
𝑌 𝑧

𝑈 𝑧

Thus, 𝐺 𝑧 will be the ratio of two
rational polynomials
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Linear systems: transfer function
In general, if we apply the 𝑍-transform to the state variables, to the inputs and to the 

outputs, we obtain that 𝑮 𝑧 can be expressed as: 

𝑮 𝑧
𝒖 𝑡 𝒚 𝑡 The transfer function can be viewed as an object

that filters the input 𝒖 𝑡 to obtain the output 𝒚 𝑡

The filtering behaviour of 𝑮 𝑧 can be viewed in the  frequency domain

𝑮 𝑧 = 𝐶 𝑧𝐼𝑛 − 𝐴 −1𝐵 + 𝐷 (discrete-time case)

The transfer function 𝑮 𝑧 depends only on the system and not on the input signal



/10231

Linear systems: transfer function

𝐴 =
0.1 0.4
0.3 0.2

𝐵 =
1
0

𝐶 = 3 1 𝐷 = 0

𝐺 𝑧 = 𝐶 z𝐼𝑛 − 𝐴 −1𝐵 + 𝐷

= 3 1 ⋅
𝑧 0
0 𝑧

−
0.1 0.4
0.3 0.2

−1

⋅
1
0
+ 0 =

= 3 1 ⋅
𝑧 − 0.1 −0.4
−0.3 𝑧 − 0.2

−1

⋅
1
0

=

= 3 1 ⋅
1

𝑧2 − 0.3𝑧 − 0.1
𝑧 − 0.2 0.4
0.3 𝑧 − 0.1

⋅
1
0

=

𝑎 𝑏
𝑐 𝑑

−1

=
1

𝑎 ⋅ 𝑑 − 𝑏 ⋅ 𝑐
𝑑 −𝑏
−𝑐 𝑎
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Linear systems: transfer function

𝐴 =
0.1 0.4
0.3 0.2

𝐵 =
1
0

𝐶 = 3 1 𝐷 = 0

𝐺 𝑧 =
1

𝑧2 − 0.3𝑧 − 0.1
3 1 ⋅

𝑧 − 0.2 0.4
0.3 𝑧 − 0.1

⋅
1
0

=

=
1

𝑧2 − 0.3𝑧 − 0.1
3 1 ⋅

𝑧 − 0.2
0.3

𝐺 𝑧 =
3𝑧 − 0.3

𝑧2 − 0.3𝑧 − 0.1

The denominator is the
characteristic polynomial
of the matrix 𝐴
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Linear systems: transfer function

𝑦 𝑡 = 𝐺 𝑧 𝑢 𝑡 =
3𝑧 − 0.3

𝑧2 − 0.3𝑧 − 0.1
𝑢 𝑡 𝑦 𝑡 =

3𝑧−1 − 0.3𝑧−2

1 − 0.3𝑧−1 − 0.1𝑧−2
𝑢 𝑡

𝐺 𝑧 =
3𝑧 − 0.3

𝑧2 − 0.3𝑧 − 0.1

Transfer function
form

With a little abuse of notation, we can write:

𝑦 𝑡 = 0.3𝑦 𝑡 − 1 + 0.1𝑦 𝑡 − 2 + 3𝑢 𝑡 − 1 − 0.3𝑢 𝑡 − 2
Recursive equation

(filter) form
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Linear systems representation summary

𝐺 𝑧 =
3𝑧−1 − 0.3𝑧−2

1 − 0.3𝑧−1 − 0.1𝑧−2

𝑦 𝑡 = 0.3𝑦 𝑡 − 1 + 0.1𝑦 𝑡 − 2 + 3𝑢 𝑡 − 1 − 0.3𝑢 𝑡 − 2

Summarizing, we can represent a LTI SISO discrete-time dynamica systems as:

1) State-space representation

൞

𝑥1 𝑡 + 1 = 0.1𝑥1 𝑡 + 0.4𝑥2 𝑡 + 𝑢 𝑡

𝑥2 𝑡 + 1 = 0.3𝑥2 𝑡 + 0.2𝑥2 𝑡

𝑦 𝑡 = 3𝑥1 𝑡 + 𝑥2 𝑡

3) Recursive filter representation

2) Transfer function representation

The state-space is the most complete representation. The transfer function form represents only

the states that are reachable\observable from input\output signals, respectively

realization

𝐶 𝑧𝐼𝑛 − 𝐴 −1𝐵 + 𝐷
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Linear systems: zeros and poles

𝐺 𝑧 =
3𝑧 − 0.3

𝑧2 − 0.3𝑧 − 0.1

The transfer function polynomials describe the properties of the dynamical system

• Zeros: roots of the numerator

• Poles: roots of the denominator (eigenvalues of the 𝐴 matrix)

A discrete-time LTI dynamical system is said to be asymptotically stable iff its poles are 
in modulus less than 1 

𝑧2 − 0.3𝑧 − 0.1 → Poles: 𝑧1 = 0.5; 𝑧2 = −0.2 𝑧1 < 1 && 𝑧2 < 1 →
asymptotically
stable system

• Asymptotic stability implies that the output of the system has a «bounded energy», 
given a «bounded energy» input

• If a system is in a stable equilibrium state, it will return to it after a perturbation
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Frequency response

𝑠 𝑡 = 𝐴 ⋅ sin 2𝜋𝑓0 ⋅ 𝑡 ⋅ 𝑇𝑠 + 𝜑

Consider a sampled sine wave with the sampling period 𝑇𝑠. The sampled values are:

Amplitude Frequency Phase

With sampling period 𝑇𝑠, the Nyquist frequency is: 𝑓𝑁𝑦𝑞 =
𝑓𝑠
2
=

1

2 ⋅ 𝑇𝑠

In order to sample correctly, we need to use a sufficiently high sampling frequency 𝑓𝑠

The sine frequency has to respect the Nyquist criteria (sampling theorem)

𝑓0 ≤ 𝑓𝑁𝑦𝑞 =
𝑓𝑠
2
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Frequency response theorem
Consider an asymptotically stable LTI SISO system with transfer function 𝐺 𝑧 . 

𝑦 𝑡𝑢 𝑡
𝐺 𝑧

Consider an input singal 𝑢 𝑡 such that:

lim
𝑡→∞

𝑦 𝑡 = 0 ҧ𝐴 = 𝐴 ⋅ 𝐺 𝑒𝑗⋅2𝜋𝑓𝑇𝑠 ത𝜑 = 𝜑 + ∠𝐺 𝑒𝑗⋅2𝜋𝑓𝑇𝑠

Transient effect

𝑢 𝑡 = 𝐴 ⋅ sin 2𝜋𝑇𝑠𝑡 ⋅ 𝑓 + 𝜑

The output signal is: 𝑦 𝑡 = 𝑦 𝑡 + ҧ𝐴 ⋅ sin 2𝜋𝑇𝑠𝑡 ⋅ 𝑓 + ത𝜑

System Gain effect System phase shift



/10238

Frequency response theorem
Defining the FRF (Frequency Response Function) of the SISO LTI system as:

𝐻𝑇𝑠 𝑓 = 𝐺 𝑒𝑗⋅2𝜋𝑇𝑠⋅𝑓

We can write the output 𝑦 𝑡 given a sine input 𝑢 𝑡 = 𝐴 ⋅ sin 2𝜋𝑇𝑠𝑡 ⋅ 𝑓 + 𝜑 as :

𝑦 𝑡 = 𝐴 ⋅ 𝐻𝑇𝑆 𝑓 ⋅ sin 2𝜋𝑓 ⋅ 𝑡 + 𝜑 + ∠𝐻𝑇𝑆 𝑓

The output of an LTI system to a sine wave input, after the transient, is another sine 

wave with the same frequency, but with phase and gain modified by the system

The FRF depends only on the system and the sampling period/frequency
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Bode diagrams
The bode diagrams are composed by two graphs:

• The magnitude graph, that plots the magnitude of the system frequency response

𝐻𝑇𝑠 𝑓

• The phase graph, that plots the phase of the system frequency response

∠𝐻𝑇𝑠 𝑓

The frequencies are plotted in a logarithmic scale

The magnitude is expressed in dB (decibels), i.e. dB 𝑓 = 20 ⋅ log 𝐻𝑇𝑠 𝑓

The phase is usually expressed in degrees, but sometimes the radiants are used instead
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Bode diagrams
𝐺 𝑧 =

0.05𝑧 + 0.2

𝑧2 − 1.8𝑧 + 0.9

𝑇𝑠 = 0.1s 𝑓𝑁𝑦𝑞 =
1

2𝑇𝑠
=

1

2 ⋅ 0.1
= 5

0.5Hz 𝑓𝑁𝑦𝑞

Output
amplification

System 
bandwith ≈ 𝟏𝐇𝐳

Output
attenuation

Transient effect

Compute the output of the system with input 
(sine wave with frequency 0.5Hz):

𝑢 𝑡 = sin 2𝜋𝑇𝑠𝑡 ⋅ 0.5



/10241

Linear systems: continuous time
Physical systems are naturally described in continuous time, i.e. 𝑡 ∈ ℝ>0, as opposite to 

discrete systems where 𝑡 ∈ ℕ>0. In this case, a linear dynamical model reads as:

ቐ

ሶ𝒙 𝑡 = 𝐴 ⋅ 𝒙 𝑡 + 𝐵 ⋅ 𝒖 𝑡

𝒚 𝑡 = 𝐶 ⋅ 𝒙 𝑡 + 𝐷 ⋅ 𝒖 𝑡

The transfer function 𝑮 𝑠 can be computer by resorting to the Laplace transformation, 

where 𝑠 ∈ ℂ is the Laplace variable. We then have that

ቐ
𝑠𝑿 𝑠 = 𝐴 ⋅ 𝑿 𝑠 + 𝐵 ⋅ 𝑼 𝑠

𝒀 𝑠 = 𝐶 ⋅ 𝑿 𝑠 + 𝐷 ⋅ 𝑼 𝑠

Laplace transform
ℒ 𝑠

𝑮 𝑠 = 𝐶 𝑠𝐼𝑛 − 𝐴 −1𝐵 + 𝐷

(continuous-time case)
• The system 𝑮 𝑠 is asymptotically stable iif the 

poles are < 0
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How to get models of dynamical systems
There are several ways to define a model for a physical system:

1. White-box models: derive a continuous-time model from the physics of the system, 

by combining differential equation (usually conservation laws). Then, discretize the 

model with the sampling frequency 𝑓𝑠 of your measured signals (Matlab c2d)

2. Gray-box models: derive the model structure (number of poles\zeros) from physical

laws, but estimate its parameters (ex. The transfer fuction polynomial coefficients) 

from data

3. Black-box models: estimate both the model structure and the model parameters

from data IMAD (6 cfu) 1° year Master degree Computer Engineering
Dynamic systems identification (9 cfu) 1° year EMH
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Outline

43

1. Schematic of the approach

2. Dynamical systems

3. Parity space approach

4. Diagnostic observer

5. Application to EMA fault detection
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Modeling systems with faults
We consider faults that can be modeled as additive signals 

Plant
(transfer function

matrix 𝑮𝑦𝑢)

Plant
(transfer function

matrix 𝑮𝑦𝑢)Control 
inputs

Plant
outputs

Faults Noise
inputs

Disturbance
inputs

• Many faults (on actuators and sensors) can be modeled in this way

• Process faults, usually modeled as multiplicative faults, can be restated as additive

• 𝒅 𝑡 ∈ ℝ𝑚𝑑×1: additive unknown disturbances

• 𝒇 𝑡 ∈ ℝ𝑚𝑓×1: additive fault signals

• We assume no noise signals 𝒘 𝑡 are present

൞

𝒙 𝑡 + 1 = 𝐴 ⋅ 𝒙 𝑡 + 𝐵 ⋅ 𝒖 𝑡 + 𝐵𝑑 ⋅ 𝒅 𝑡 + 𝐵𝑓 ⋅ 𝒇 𝑡

𝒚 𝑡 = 𝐶 ⋅ 𝒙 𝑡 + 𝐷 ⋅ 𝒖 𝑡 + 𝐷𝑑 ⋅ 𝒅 𝑡 + 𝐷𝑓 ⋅ 𝒇 𝑡

𝑛 × 1 𝑛 × 𝑛 𝑛 ×𝑚𝑢 𝑚𝑢 × 1 𝑛 ×𝑚𝑑 𝑛 ×𝑚𝑓 𝑚𝑓 × 1𝑚𝑑 × 1

𝑝 × 1 𝑝 × 𝑛 𝑝 ×𝑚𝑢 𝑝 ×𝑚𝑑 𝑝 ×𝑚𝑓 𝒚 𝑡𝒖 𝑡

𝒇 𝑡 𝒘 𝑡 𝒅 𝑡
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• a great number of FDI methods and ideas have been first presented in the parity 

space framework, and later extended to other frameworks

45

The parity space framework
In the parity space FDI (Fault Detection and Isolation) framework the dynamics of the 

residual signals are presented in the form of algebraic equations

𝑸 𝑧

𝒖(𝑡)

𝒚(𝑡)
𝒓(𝑡)

Thus, most the problem solutions are achieved with linear algebra tools

• the system designer is not required to have rich knowledge of advanced control theory

• most computations can be completed without complex and involved algorithms
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Suppose that 𝒘 𝑡 = 𝟎, 𝒅 𝑡 = 𝟎 and 𝒇 𝑡 = 𝟎, i.e. the system is not subject to external 

noise, disturbances and faults. Then, with 𝑠 ≥ 0, the following relations hold:

• 𝒚 𝑡 − 𝑠 = 𝐶𝒙 𝑡 − 𝑠 + 𝐷𝒖 𝑡 − 𝑠

= 𝐶 ⋅ 𝐴𝒙 𝑡 − 𝑠 + 𝐵𝒖 𝑡 − 𝑠 + 𝐷𝒖 𝑡 − 𝑠 + 1

= 𝐶𝐴1𝒙 𝑡 − 𝑠 + 𝐶𝐵𝒖 𝑡 − 𝑠 + 𝐷𝒖 𝑡 − 𝑠 + 1

• 𝒚 𝑡 − 𝑠 + 1 = 𝐶𝒙 𝑡 − 𝑠 + 1 + 𝐷𝒖 𝑡 − 𝑠 + 1

Parity space idea
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= 𝐶 ⋅ 𝐴𝒙 𝑡 − 𝑠 + 𝐵𝒖 𝑡 − 𝑠 + 𝐷𝒖 𝑡 − 𝑠 + 1

= 𝐶𝐴1𝒙 𝑡 − 𝑠 + 𝐶𝐵𝒖 𝑡 − 𝑠 + 𝐷𝒖 𝑡 − 𝑠 + 1

• 𝒚 𝑡 − 𝑠 + 1 = 𝐶𝒙 𝑡 − 𝑠 + 1 + 𝐷𝒖 𝑡 − 𝑠 + 1

= 𝐶 ⋅ 𝐴𝒙 𝑡 − 𝑠 + 1 + 𝐵𝒖 𝑡 − 𝑠 + 1 + 𝐷𝒖 𝑡 − 𝑠 + 2

= 𝐶𝐴2𝒙 𝑡 − 𝑠 + 𝐶𝐴2−1𝐵𝒖 𝑡 − 𝑠 + 𝐶𝐵𝒖 𝑡 − 𝑠 + 1 + 𝐷𝒖 𝑡 − 𝑠 + 2

• 𝒚 𝑡 − 𝑠 + 2 = 𝐶𝒙 𝑡 − 𝑠 + 2 + 𝐷𝒖 𝑡 − 𝑠 + 2

= 𝐶𝐴 ⋅ 𝐴𝒙 𝑡 − 𝑠 + 𝐵𝒖 𝑡 − 𝑠 + 𝐶𝐵𝒖 𝑡 − 𝑠 + 1 + 𝐷𝒖 𝑡 − 𝑠 + 2

𝑡 − 𝑠 + 2 − 1 𝑡 − 𝑠 + 2

Parity space idea
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= 𝐶 ⋅ 𝐴𝒙 𝑡 − 𝑠 + 1 + 𝐵𝒖 𝑡 − 𝑠 + 1 + 𝐷𝒖 𝑡 − 𝑠 + 2

= 𝐶𝐴2𝒙 𝑡 − 𝑠 + 𝐶𝐴2−1𝐵𝒖 𝑡 − 𝑠 + 𝐶𝐵𝒖 𝑡 − 𝑠 + 1 + 𝐷𝒖 𝑡 − 𝑠 + 2

• 𝒚 𝑡 − 𝑠 + 2 = 𝐶𝒙 𝑡 − 𝑠 + 2 + 𝐷𝒖 𝑡 − 𝑠 + 2

= 𝐶𝐴 ⋅ 𝐴𝒙 𝑡 − 𝑠 + 𝐵𝒖 𝑡 − 𝑠 + 𝐶𝐵𝒖 𝑡 − 𝑠 + 1 + 𝐷𝒖 𝑡 − 𝑠 + 2

𝑡 − 𝑠 + 2 − 1 𝑡 − 𝑠 + 2

• 𝒚 𝑡 − 𝑠 + 𝑠 = 𝒚 𝑡 = 𝐶𝐴𝑠𝒙 𝑡 − 𝑠 + 𝐶𝐴𝑠−1𝐵𝒖 𝑡 − 𝑠 +⋯+ 𝐶𝐵𝒖 𝑡 − 1 + 𝐷𝒖 𝑡

⋮

𝑡 − 𝑠 + 𝑠 − 1 𝑡 − 𝑠 + 𝑠

Parity space idea
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Define now the following quantities:

𝒚𝑠 𝑡 =

𝒚 𝑡 − 𝑠

𝒚 𝑡 − 𝑠 + 1
⋮

𝒚 𝑡
𝑝 𝑠 + 1 × 1

𝑝 × 1

𝒖𝑠 𝑡 =

𝒖 𝑡 − 𝑠

𝒖 𝑡 − 𝑠 + 1
⋮

𝒖 𝑡

𝑚𝑢 𝑠 + 1 × 1

𝑚𝑢 × 1

𝐻𝑜,𝑠 =

𝐶

𝐶𝐴
⋮

𝐶𝐴𝑠
𝑝 𝑠 + 1 × 𝑛

𝑝 × 𝑛

𝐻𝑢,𝑠 =

𝐷 0 ⋯ ⋯ 0
𝐶𝐵 ⋮

⋮
⋮

𝐶𝐴𝑠−1𝐵 ⋯ ⋯ 𝐶𝐵
0
𝐷

𝑝 𝑠 + 1 ×𝑚𝑢 𝑠 + 1

𝑝 ×𝑚𝑢

Parity space idea
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Given the quantities 𝒖𝑠, 𝒚𝑠 , 𝐻𝑜,𝑠 , 𝐻𝑢,𝑠, we can write

𝒚 𝑡 − 𝑠

𝒚 𝑡 − 𝑠 + 1
⋮

𝒚 𝑡

=

𝐶

𝐶𝐴
⋮

𝐶𝐴𝑠

⋅ 𝒙 𝑡 − 𝑠 +

𝐷 0 ⋯ ⋯ 0
𝐶𝐵 ⋮

⋮
⋮

𝐶𝐴𝑠−1𝐵 ⋯ ⋯ 𝐶𝐵
0
𝐷

⋅

𝒖 𝑡 − 𝑠

𝒖 𝑡 − 𝑠 + 1
⋮

𝒖 𝑡

𝒚𝑠 𝑡 = 𝐻𝑜,𝑠𝒙 𝑡 − 𝑠 + 𝐻𝑢,𝑠𝒖𝑠 𝑡
Parity 

relation

𝑚𝑢 𝑠 + 1 × 1𝑝 𝑠 + 1 × 1 𝑝 𝑠 + 1 ×𝑚𝑢 𝑠 + 1
𝑝 𝑠 + 1 × 𝑛

𝑛 × 1

Parity space idea
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𝒚𝑠 𝑡 = 𝐻𝑜,𝑠𝒙 𝑡 − 𝑠 + 𝐻𝑢,𝑠𝒖𝑠 𝑡
Parity 

relation

• Describes the inputs and outputs relationship based on the past state vector 𝒙(𝑡 − 𝑠)

• 𝒚𝑠 and 𝒖𝑠 consist of the temporal and past outputs and inputs, and are known

• Matrices 𝐻𝑜,𝑠 and 𝐻𝑢,𝑠 are composite of system matrices 𝐴, 𝐵, 𝐶, 𝐷 and are also known

• The only unknown variable is 𝒙(𝑡 − 𝑠)

Parity space idea
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The underlying idea of the parity relation based residual generation lies in the utilization 

of the that, for 𝑠 ≥ 𝑛, the following rank condition holds:

𝐻𝑜,𝑠 =

𝐶

𝐶𝐴
⋮

𝐶𝐴𝑠

𝑝 𝑠 + 1 × 𝑛

𝑝 × 𝑛

rank 𝐻𝑜,𝑠 ≤ 𝑛 < the number of rows of the matrix 𝐻𝑜,𝑠, i. e. 𝑝 𝑠 + 1

Therefore, for 𝑠 ≥ 𝑛, there exists a vector 𝒗𝑠𝑇 ∈ ℝ1×𝑝 𝑠+1 , 𝒗𝑠 ≠ 𝟎, such that:

𝒗𝑠
𝑇 ⋅ 𝐻𝑜,𝑠 = 𝟎

that is, it is possible to express a row of 𝐻𝑜,𝑠 as linear combination of other rows of 𝐻𝑜,𝑠. 

The vector 𝒗𝑠 can be found by solving the above linear system. However, 𝒗𝑠 is not 

guaranteed to be unique. 

The multiplication of a row vector
for a matrix results into a linear
combination of the matrix rows

Parity space idea
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From the observation that 𝒗𝑠𝑇𝐻𝑜,𝑠 = 𝟎, a residual signal 𝑟 𝑡 is built as: 

𝑟 𝑡 = 𝒗𝑠
𝑇 ⋅ 𝒚𝑠 𝑡 − 𝐻𝑢,𝑠 𝒖𝑠 𝑡

In the nominal case where 𝒅 𝑡 = 𝟎, 𝒇 𝑡 = 𝟎, we have that:

𝑟 𝑡 = 𝒗𝑠
𝑇 ⋅ 𝐻𝑜,𝑠 𝒙 𝑡 − 𝑠 = 0

1 × 𝑝 𝑠 + 1 𝑝 𝑠 + 1 × 1

Residual 
generator

Vectors satisfying 𝒗𝑠
𝑇 ⋅ 𝐻𝑜,𝑠 = 𝟎 are called parity vectors. The set 𝑃𝑠 = 𝒗𝑠 | 𝒗𝑠𝐻𝑜,𝑠 = 𝟎 is

called parity space

In the nominal case,
the residual is zero

Parity space residual generator
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and characteristic equation 𝜑 𝜆 = 0, whose solutions are the eigenvalues of 𝐴

54

The main observation for building a parity vector was the fact that:

rank 𝐻𝑜,𝑠 ≤ 𝑛 < the number of rows of the matrix 𝐻𝑜,𝑠, i. e. 𝑝 𝑠 + 1

𝐻𝑜,𝑠 =

𝐶

𝐶𝐴
⋮

𝐶𝐴𝑠

𝑝 𝑠 + 1 × 𝑛

𝑝 × 𝑛

The previous statement can be proved by considering the square matrix 𝐴 ∈ ℝ𝑛×𝑛, its 

associated characteristic polynomial (with 𝜆 ∈ ℂ)

𝜑 𝜆 = 𝜆𝑛 + 𝑎1𝜆
𝑛−1 + 𝑎2𝜆

𝑛−2 +⋯+ 𝑎𝑛

From the Cayley-Hamilton theorem, it holds that:

𝜑 𝐴 = 𝐴𝑛 + 𝑎1𝐴
𝑛−1 + 𝑎2𝐴

𝑛−2 +⋯+ 𝑎𝑛𝐼𝑛 = 0

Parity space residual generator



/10255

Parity space residual generator

As an example, consider a 2° order LTI SISO system, i.e. with 𝐴 ∈ ℝ2×2 and 𝐶 ∈ ℝ1×2

𝜑 𝐴 = 𝐴𝑛 + 𝑎1𝐴
𝑛−1 + 𝑎2𝐴

𝑛−2 +⋯+ 𝑎𝑛𝐼𝑛 = 0

𝐶 ⋅ 𝜑 𝐴 = 𝐶𝐴𝑛 + 𝑎1𝐶𝐴
𝑛−1 + 𝑎2𝐶𝐴

𝑛−2 +⋯+ 𝑎𝑛𝐶 = 0

𝐶 ⋅ 𝜑 𝐴 = 𝐶𝐴2 + 𝑎1𝐶𝐴 + 𝑎2𝐶 = 0

𝐶𝐴2 = −𝑎1𝐶𝐴 − 𝑎2𝐶

• 𝐶𝐴 = 𝑤1 𝑤2• 𝐶 = 𝑐1 𝑐2

= −𝑎1 𝑤1 𝑤2 − 𝑎2 𝑐1 𝑐2 = −𝑎1 −𝑎2
𝑤1 𝑤2
𝑐1 𝑐2

= −𝑎1 −𝑎2
𝐶𝐴
𝐶

Thus, the rows of 𝐶𝐴2 can be expressed as a linear combination of the rows of 𝐶 and 𝐶𝐴, 

with rank 𝐻𝑜,𝑠 ≤ 2

𝐻𝑜,𝑠 =
𝐶
𝐶𝐴
𝐶𝐴2

,
3 × 2



/10256

Consider the SISO nominal system model

𝑌 𝑧 = 𝐺𝑦𝑢 𝑧 𝑈 𝑧 =
𝑏𝑛𝑧

𝑛 + 𝑏𝑛−1𝑧
𝑛−1 +⋯+ 𝑏1𝑧 + 𝑏0

𝑧𝑛 + 𝑎𝑛−1𝑧
𝑛−1 +⋯+ 𝑎1𝑧 + 𝑎0

𝑈 𝑧

Parity space: example

A trivial way to construct a parity space based residual generator is to: 

1. rewrite the system into its minimum state space realization form 

2. solve the linear system 𝒗𝑠𝑇 ⋅ 𝐻𝑜,𝑠 = 𝟎 for 𝒗𝑠

3. construct the residual generator 𝑟 𝑡 = 𝒗𝑠
𝑇 ⋅ 𝒚𝑠 𝑡 − 𝐻𝑢,𝑠 𝒖𝑠 𝑡
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On the other side, it follows from Cayley–Hamilton theorem that:

𝐴𝑛 + 𝑎𝑛−1𝐴
𝑛−1 + 𝑎𝑛−2𝐴

𝑛−2 +⋯+ 𝑎0𝐼𝑛 = 𝟎

Parity space: example

where 𝐴, 𝐶 denote the system matrices of the minimum state space realization of 𝐺𝑦𝑢 𝑧 . 

That means that:

𝑎0 ⋯ 𝑎𝑛−1 1

𝐶
𝐶𝐴
⋮

𝐶𝐴𝑛

= 𝟎

𝒗𝑠 = 𝑎0 ⋯ 𝑎𝑛−1 1

is a parity space vector for 𝐺𝑦𝑢 𝑧 .
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The residual generator can be constructed as:

𝑟 𝑡 = 𝒗𝑠
𝑇 ⋅ 𝒚𝑠 𝑡 − 𝐻𝑢,𝑠 𝒖𝑠 𝑡 = 𝒗𝑠

𝑇𝒚𝑠 𝑡 − 𝒗𝑠
𝑇𝐻𝑢,𝑠 𝒖𝑠 𝑡

Parity space: example

= 𝑎0 ⋯ 𝑎𝑛−1 1 𝒚𝑠 𝑡 − 𝒗𝑠
𝑇𝐻𝑢,𝑠 𝒖𝑠 𝑡

= 𝑎0𝑦 𝑡 − 𝑠 +⋯+ 𝑎1𝑦 𝑡 − 𝑠 + 1 + 𝑦 𝑡 − 𝒗𝑠
𝑇𝐻𝑢,𝑠 𝒖𝑠 𝑡 = 0

For the equality 𝑟 𝑡 = 0 to hold in the nominal case, it follows that 

𝒗𝑠
𝑇𝐻𝑢,𝑠 = 𝑏0 ⋯ 𝑏𝑛−1 𝑏𝑛

As a result, the residual generator, corresponding to the previous choice of 𝒗𝑠, is given by

𝑟 𝑡 = 𝑎0 ⋯ 𝑎𝑛−1 1 ⋅ 𝒚𝑠 𝑡 − 𝑏0 ⋯ 𝑏𝑛−1 𝑏𝑛 ⋅ 𝒖𝑠 𝑡
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Consider an open-loop model of a DC motor

Parity space: DC motor example

1/𝑅𝑎
1 + 𝑇𝑎𝑠

𝑘𝑡
𝜏𝑚 𝑡𝑖𝑎 𝑡

𝜏𝑙 𝑡

−+ 1/𝐽

𝑠

+

𝑘𝑒

𝜔 𝑡𝑉 𝑡

𝐸 𝑡

−

• Total inertia 𝐽: 80.45 ⋅ 10−6 Kg ⋅ m2

• Motor electrical constant 𝑘𝑒: 6.27 ⋅ 10−3 V/rpm

• Motor torque constant 𝑘𝑡 = 0.06 Nm/A

• Motor coil inductance 𝐿𝑎 = 0.003 H

• Motor coil resistance 𝑅𝑎 = 3.13 Ω

• Electrical time constant 𝑇𝑎 = 𝐿𝑎/𝑅𝑎 s

𝐺𝑦𝑢 𝑠 =
1

𝐾𝑒 ⋅ 1 + 𝐽 ⋅
𝑅𝑎
𝐾𝑡𝐾𝑒

𝑠 + 𝐽 ⋅ 𝑇𝑎 ⋅
𝑅𝑎
𝐾𝑡𝐾𝑒

𝑠2

• Model input 𝑢 𝑡 = 𝑉 𝑡

• Model output 𝑦 𝑡 = 𝜔 𝑡

• Disturbance 𝑑 𝑡 = 𝜏𝑙 𝑡

𝐺𝑦𝑑 𝑠 = −
𝑅𝑎 1 + 𝑇𝑎𝑠

𝐾𝑡𝐾𝑒 ⋅ 1 + 𝐽 ⋅
𝑅𝑎
𝐾𝑡𝐾𝑒

𝑠 + 𝐽 ⋅ 𝑇𝑎 ⋅
𝑅𝑎
𝐾𝑡𝐾𝑒

𝑠2
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Compute the transfer functions and convert to discrete time (with sampling freq. 100 Hz)

Parity space: DC motor example

𝐺𝑦𝑢 𝑠 =
2.486 ⋅ 105

𝑠 + 1042 𝑠 + 1.496

𝐺𝑦𝑑 𝑠 =
−12430 ⋅ 𝑠 + 1043

𝑠 + 1042 𝑠 + 1.496

𝐺𝑦𝑢 𝑧 =
1.184 𝑧 + 1.184

𝑧2 − 0.9852 𝑧 + 2.943 ⋅ 10−5

c2d

𝐺𝑦𝑑 𝑧 =
−123.6𝑧 + 0.003637

𝑧2 − 0.9852 𝑧 + 2.943 ⋅ 10−5

c2d

A valid parity vector is:

𝒗𝑠
𝑇 = 2.943 ⋅ 10−5 −0.9852 1
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A state space realization of 𝐺𝑦𝑢 𝑧 leads to

𝐺𝑦𝑢 𝑧 =
1.184 𝑧 + 1.184

𝑧2 − 0.9852 𝑧 + 2.943 ⋅ 10−5

minreal(ss(G_yu))

𝐻𝑜,𝑠 =
0.0740 18.9468
0.1469
0.1447

−0.0006
−0.0011

𝐻𝑢,𝑠 =
0 0 0

1.1842
2.3508

0
1.1842

0
0

Parity space: DC motor example 

𝑝 𝑠 + 1 ×𝑚𝑢 𝑠 + 1𝑝 𝑠 + 1 × 𝑛
1 2 + 1 × 2 1 2 + 1 × 1(2 + 1)

𝐴 =
0.9852 −0.007535
0.003906 0

2 × 2

𝑛 × 𝑛

𝐶 = 0.07401 18.95
𝑝 × 𝑛

1 × 2

𝑛 × 𝑚𝑢

𝐵 =
16
0

2 × 1

𝐷 = 0
𝑝 ×𝑚𝑢

1 × 1

Always check the solution!

𝒗𝑠
𝑇𝐻𝑜,𝑠 = 2.943 ⋅ 10−5 −0.9852 1 ⋅

0.0740 18.9468
0.1469
0.1447

−0.0006
−0.0011

= 0 0 CORRECT! ☺
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Parity space: DC motor example

1. Simulate data, 𝑢 𝑡 = 𝑊𝑁 0,1

𝑟 𝑡 = 𝒗𝑠
𝑇 ⋅ 𝒚𝑠 𝑡 − 𝐻𝑢,𝑠 𝒖𝑠 𝑡

2. Compute the residual

𝜃 𝑡 = 𝑟 𝑡

3. Evaluate the residual
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Parity space: effects of faults and disturbances
Suppose now that disturbances and faults affect the system, i.e. 𝒅 𝑡 ≠ 0 and 𝒇 𝑡 ≠ 0. 

By defining the quantities:

𝒇𝑠 𝑡 =

𝒇 𝑡 − 𝑠

𝒇 𝑡 − 𝑠 + 1
⋮

𝒇 𝑡
𝑚𝑓 𝑠 + 1 × 1

𝑚𝑓 × 1

𝐻𝑓,𝑠 =

𝐷𝑓 0 ⋯ ⋯ 0

𝐶𝐵𝑓 ⋮
⋮

⋮
𝐶𝐴𝑠−1𝐵𝑓 ⋯ ⋯ 𝐶𝐵𝑓

0
𝐷𝑓

𝑝 𝑠 + 1 × 𝑚𝑓 𝑠 + 1

𝑝 ×𝑚𝑓

𝒅𝑠 𝑡 =

𝒅 𝑡 − 𝑠

𝒅 𝑡 − 𝑠 + 1
⋮

𝒅 𝑡
𝑚𝑑 𝑠 + 1 × 1

𝑚𝑑 × 1

𝐻𝑑,𝑠 =

𝐷𝑑 0 ⋯ ⋯ 0
𝐶𝐵𝑑 ⋮

⋮
⋮

𝐶𝐴𝑠−1𝐵𝑑 ⋯ ⋯ 𝐶𝐵𝑑

0
𝐷𝑑

𝑝 𝑠 + 1 ×𝑚𝑑 𝑠 + 1

𝑝 × 𝑚𝑑
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Parity space: effects of faults and disturbances
Given the quantities 𝒖𝑠, 𝒚𝑠 , 𝒇𝑠, 𝒅𝑠 , 𝐻𝑜,𝑠, 𝐻𝑢,𝑠 , 𝐻𝑓,𝑠 , 𝐻𝑑,𝑠 we can write

𝒚 𝑡 − 𝑠

𝒚 𝑡 − 𝑠 + 1
⋮

𝒚 𝑡

=

𝐶

𝐶𝐴
⋮

𝐶𝐴𝑠

⋅ 𝒙 𝑡 − 𝑠 +

𝐷 0 ⋯ ⋯ 0
𝐶𝐵 ⋮

⋮
⋮

𝐶𝐴𝑠−1𝐵 ⋯ ⋯ 𝐶𝐵
0
𝐷

⋅

𝒖 𝑡 − 𝑠

𝒖 𝑡 − 𝑠 + 1
⋮

𝒖 𝑡

+

+

𝐷𝑑 0 ⋯ ⋯ 0
𝐶𝐵𝑑 ⋮

⋮
⋮

𝐶𝐴𝑠−1𝐵𝑑 ⋯ ⋯ 𝐶𝐵𝑑

0
𝐷𝑑

⋅

𝒅 𝑡 − 𝑠

𝒅 𝑡 − 𝑠 + 1
⋮

𝒅 𝑡

+

𝐷𝑓 0 ⋯ ⋯ 0

𝐶𝐵𝑓 ⋮
⋮

⋮
𝐶𝐴𝑠−1𝐵𝑓 ⋯ ⋯ 𝐶𝐵𝑓

0
𝐷𝑓

⋅

𝒇 𝑡 − 𝑠

𝒇 𝑡 − 𝑠 + 1
⋮

𝒇 𝑡

𝒚𝑠 𝑡 = 𝐻𝑜,𝑠𝒙 𝑡 − 𝑠 + 𝐻𝑢,𝑠𝒖𝑠 𝑡 + 𝐻𝑑,𝑠𝒅𝑠 𝑡 + 𝐻𝑓,𝑠𝒇𝑠 𝑡
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Parity space: effects of faults and disturbances
The effects of the disturbances and faults on the residual are then given by:

𝑟 𝑡 = 𝒗𝑠
𝑇 ⋅ 𝒚𝑠 𝑡 − 𝐻𝑢,𝑠 𝒖𝑠 𝑡

= 𝒗𝑠
𝑇 ⋅ 𝐻𝑜,𝑠𝒙 𝑡 − 𝑠 + 𝐻𝑑,𝑠𝒅𝑠 𝑡 + 𝐻𝑓,𝑠𝒇𝑠 𝑡

𝑟 𝑡 = 𝒗𝑠
𝑇 ⋅ 𝐻𝑑,𝑠𝒅𝑠 𝑡 + 𝐻𝑓,𝑠𝒇𝑠 𝑡
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Parity space: effects of faults and disturbances

𝑟 𝑡 = 𝒗𝑠
𝑇 ⋅ 𝐻𝑑,𝑠𝒅𝑠 𝑡 + 𝐻𝑓,𝑠𝒇𝑠 𝑡

Ideally, if 𝒗𝑠𝑇𝐻𝑓,𝑠 ≠ 𝟎, the residual is not zero when a fault is present, and so fault 

detection is achieved. However, the residual is also sensitive to the disturbances.

The choice of the parity vector has decisive impact on the performance of the residual 

generator. Its design can however be carried out in a straightforward manner.

In against, the presented form of 𝑟 𝑡 is not ideal for an on-line implementation, since 

not only the actual, but also the past measurements and input data need to be recorded
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Suppose there is a STEP fault,

𝑓 𝑡 = 20 ⋅ step 𝑡 on the speed

sensor at time 𝑡 = 10

Parity space: DC motor example

1/𝑅𝑎
1 + 𝑇𝑎𝑠

𝑘𝑡

𝜏𝑚 𝑡𝑖𝑎 𝑡

𝜏𝑙 𝑡

−
+ 1/𝐽

𝑠

+ 𝜔 𝑡𝑉 𝑡

𝐸 𝑡

−

+
+

𝑘𝑒

𝑓 𝑡

𝜔 𝑡
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Suppose there is a NOISE fault,

𝑓 𝑡 = 𝑊𝑁 0, 𝜆2 with SNR = 10 on

the speed sensor at time 𝑡 = 10

Parity space: DC motor example

1/𝑅𝑎
1 + 𝑇𝑎𝑠

𝑘𝑡

𝜏𝑚 𝑡𝑖𝑎 𝑡

𝜏𝑙 𝑡

−
+ 1/𝐽

𝑠

+ 𝜔 𝑡𝑉 𝑡

𝐸 𝑡

−

+
+

𝑘𝑒

𝑓 𝑡

𝜔 𝑡
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For the fault detection purpose, an ideal residual generation would be a residual signal 

that only depends on the faults to be detected and is simultaneously independent of 

the disturbances

Parity space: input decoupling

𝑟 𝑡 = 𝒗𝑠
𝑇 ⋅ 𝐻𝑑,𝑠𝒅𝑠 𝑡 + 𝐻𝑓,𝑠𝒇𝑠 𝑡

Recall the form of the parity space based residual generator, 𝒗𝑠 ∈ 𝑃𝑠:

Thus, a residual decoupled from 𝒅𝑠 𝑡 is delivered if and only if there exists 𝒗𝑠 ∈ 𝑃𝑠 s.t.

𝒗𝑠
𝑇𝐻𝑓,𝑠 ≠ 𝟎 𝒗𝑠

𝑇𝐻𝑑,𝑠 = 𝟎and
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The previous condition can be equivalently restated as (with Δ ≠ 𝟎 ∈ ℝ1×𝑚𝑓 𝑠+1 )

Parity space: input decoupling

𝒗𝑠
𝑇 ⋅ 𝐻𝑓,𝑠 𝐻𝑜,𝑠 𝐻𝑑,𝑠 = Δ 𝟎 𝟎

𝑝 𝑠 + 1 × 𝑛

𝑝 𝑠 + 1 × 𝑚𝑓 𝑠 + 1 𝑝 𝑠 + 1 ×𝑚𝑑 𝑠 + 1

So, the residual 𝑟 𝑡 is decoupled from 𝒅𝑠 𝑡 if and only if

rank 𝐻𝑓,𝑠 𝐻𝑜,𝑠 𝐻𝑑,𝑠 > rank 𝐻𝑜,𝑠 𝐻𝑑,𝑠

1 ×𝑚𝑓 𝑠 + 11 × 𝑝 𝑠 + 1

i.e. the colums of the matrix 𝐻𝑓,𝑠 are not linear combinations of the columns of the 

matrix 𝐻𝑜,𝑠 𝐻𝑑,𝑠

Generally, this condition is fulfilled is
there is a number of output
measurements which is greater than
the number of unobserved inputs, i.e.
𝑝 > 𝑚𝑑 +𝑚𝑓
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The parity space based residual design algorithm is therefore:

Parity space: input decoupling

1. Solve, for some 𝑠 such that the input decoupling condition holds, the problem

𝒗𝑠
𝑇𝐻𝑓,𝑠 ≠ 𝟎 𝒗𝑠

𝑇 𝐻𝑜,𝑠 𝐻𝑑,𝑠 = 𝟎and

2. Construct the residual generator as follows

𝑟 𝑡 = 𝒗𝑠
𝑇 ⋅ 𝒚𝑠 𝑡 − 𝐻𝑢,𝑠 𝒖𝑠 𝑡

This leads to a residue 𝑟 𝑡 = 𝒗𝑠
𝑇 ⋅ 𝐻𝑜,𝑠𝒙 𝑡 − 𝑠 + 𝐻𝑑,𝑠𝒅𝑠 𝑡 + 𝐻𝑓,𝑠𝒇𝑠 𝑡 = 𝐻𝑓,𝑠𝒇𝑠 𝑡
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In order to define 𝐵𝑑 , 𝐷𝑑 , 𝐵𝑓 , 𝐷𝑑 , it is useful (but not mandatory) to start from the

transfer functions 𝑮𝑦𝑑 𝑧 and 𝑮𝑦𝑓(𝑧), that describe the effect of disturbances and

faults on output signals, respectively. Then a state space realization can be performed

to get 𝐵𝑑 , 𝐷𝑑 , 𝐵𝑓 , 𝐷𝑑

72

Definition of 𝐵𝑓 , 𝐷𝑓 and 𝐵𝑑 , 𝐷𝑑

൞

𝒙 𝑡 + 1 = 𝐴 ⋅ 𝒙 𝑡 + 𝐵 ⋅ 𝒖 𝑡 + 𝐵𝑑 ⋅ 𝒅 𝑡 + 𝐵𝑓 ⋅ 𝒇 𝑡

𝒚 𝑡 = 𝐶 ⋅ 𝒙 𝑡 + 𝐷 ⋅ 𝒖 𝑡 + 𝐷𝑑 ⋅ 𝒅 𝑡 + 𝐷𝑓 ⋅ 𝒇 𝑡

𝑛 × 1 𝑛 × 𝑛 𝑛 ×𝑚𝑢 𝑚𝑢 × 1 𝑛 ×𝑚𝑑 𝑛 ×𝑚𝑓 𝑚𝑓 × 1𝑚𝑑 × 1

𝑝 × 1 𝑝 × 𝑛 𝑝 ×𝑚𝑢 𝑝 ×𝑚𝑑 𝑝 ×𝑚𝑓

Recall our model for a system with additive faults and disturbances
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Definition of 𝐵𝑓 , 𝐷𝑓 and 𝐵𝑑 , 𝐷𝑑

൞

𝒙 𝑡 + 1 = 𝐴 ⋅ 𝒙 𝑡 + 𝐵 ⋅ 𝒖 𝑡 + 𝐵𝑑 ⋅ 𝒅 𝑡 + 𝐵𝑓 ⋅ 𝒇 𝑡

𝒚 𝑡 = 𝐶 ⋅ 𝒙 𝑡 + 𝐷 ⋅ 𝒖 𝑡 + 𝐷𝑑 ⋅ 𝒅 𝑡 + 𝐷𝑓 ⋅ 𝒇 𝑡

𝑛 × 1 𝑛 × 𝑛 𝑛 ×𝑚𝑢 𝑚𝑢 × 1 𝑛 ×𝑚𝑑 𝑛 ×𝑚𝑓 𝑚𝑓 × 1𝑚𝑑 × 1

𝑝 × 1 𝑝 × 𝑛 𝑝 ×𝑚𝑢 𝑝 ×𝑚𝑑 𝑝 ×𝑚𝑓

We can express the relations of all the external inputs to the output signals as

The transfer function 𝑮𝑦𝑑 is defined by the physics of the problem

𝒚 𝑡 = 𝑮𝑦𝑢 𝑧 ⋅ 𝒖 𝑡 + 𝑮𝑦𝑑 𝑧 ⋅ 𝒅 𝑡 + 𝑮𝑦𝑓 ⋅ 𝒇 𝑡
𝑝 × 1 𝑝 ×𝑚𝑢 𝑝 ×𝑚𝑑 𝑝 ×𝑚𝑓

Realization
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Definition of 𝐵𝑓 , 𝐷𝑓 and 𝐵𝑑 , 𝐷𝑑
The transfer function 𝑮𝑦𝑓(𝑧) is implicitly defined by how we choose to model the fault

Actuator faults 𝒇𝑎
𝒚 𝑡𝒖 𝑡 + 𝑆𝑎𝒇𝑎

𝑮𝑦𝑢 𝑧
Modelling can be done by replacing 𝒖(𝑡) by a

perturbed input 𝒖 𝑡 + 𝑆𝑎𝒇𝑎 𝑡 , with 𝑆𝑎 ∈ ℝ𝑚𝑢×𝑚𝑓

a fault distribution matrix
𝑌 𝑧 = 𝑮𝑦𝑢 𝑧 𝑈 𝑧 + 𝑮𝑦𝑢 𝑧 𝑆𝑎 ⋅ 𝐹𝑎 𝑧

𝑢1 𝑡

𝑢2 𝑡
=

𝑢1 𝑡

𝑢2 𝑡
+

1 0
0 1

𝑓𝑎1 𝑡

𝑓𝑎2 𝑡

Example

𝑆𝑎 𝒇𝑎 𝑡𝒖 𝑡

𝑮𝑦𝑓 𝑧 = 𝑮𝑦𝑢 𝑧 𝑆𝑎
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Definition of 𝐵𝑓 , 𝐷𝑓 and 𝐵𝑑 , 𝐷𝑑
The transfer function 𝑮𝑦𝑓(𝑧) is implicitly defined by how we choose to model the fault

Sensor faults 𝒇𝑒

𝒚 𝑡𝒖 𝑡
𝑮𝑦𝑢 𝑧

Modelling can be done by replacing 𝒚(𝑡) by a perturbed

output 𝒚 𝑡 + 𝑆𝑒𝒇𝑒 𝑡 , with 𝑆𝑒 ∈ ℝ𝑝×𝑚𝑓 a fault

distribution matrix
𝑌 𝑧 = 𝑮𝑦𝑢 𝑧 𝑈 𝑧 + 𝑆𝑒 ⋅ 𝐹𝑒 𝑧

𝑦1 𝑡

𝑦2 𝑡
=

𝑦1 𝑡

𝑦2 𝑡
+

1 0
0 1

𝑓𝑒1 𝑡

𝑓𝑒2 𝑡

Example

𝑆𝑒 𝒇𝑒 𝑡𝒚 𝑡

𝑮𝑦𝑓 𝑧 = 𝑆𝑒

+
+

𝑆𝑒𝒇𝑒 𝑡
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Definition of 𝐵𝑓 , 𝐷𝑓 and 𝐵𝑑 , 𝐷𝑑
The transfer function 𝑮𝑦𝑓(𝑧) is implicitly defined by how we choose to model the fault

Actuator faults 𝒇𝑎 + Sensor faults 𝒇𝑒

𝒚 𝑡
𝑮𝑦𝑢 𝑧

The modeling is the union of the previous cases
+

𝑆𝑒𝒇𝑒 𝑡

𝒚 𝑡𝒖 𝑡 + 𝑆𝑎𝒇𝑎

𝑌 𝑧 = 𝑮𝑦𝑢 𝑧 𝑈 𝑧 + 𝑮𝑦𝑢𝑆𝑎 ⋅ 𝐹𝑎 𝑧

෨𝑌 𝑧 = 𝑌 𝑧 + 𝑆𝑒𝐹𝑒 𝑧 ෨𝑌 𝑧 = 𝑌 𝑧 + 𝑆𝑒𝐹𝑒 𝑧 = 𝑮𝑦𝑢 𝑧 𝑈 𝑧 + 𝑮𝑦𝑢 𝑧 𝑆𝑎 𝑆𝑒
𝐹𝑎 𝑧

𝐹𝑒 𝑧

𝑮𝑦𝑓 𝑧 = 𝑮𝑦𝑢 𝑧 𝑆𝑎 𝑆𝑒 𝒇 𝑡 =
𝒇𝑎 𝑡

𝒇𝑒 𝑡

Faults
vector
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We want to build a parity vector decoupled from the load disturbance 𝜏𝑙 𝑡 . In order to

be able to do this, we suppose that a 2nd measurement output is available, e.g. we

measure the motor speed 𝜔 𝑡 with another sensor (with different gain)

Parity space: DC motor example input decoupling

Furthermore, suppose that we have a sensor fault, s.t. 𝑌 𝑧 = 𝑮𝑦𝑢 𝑧 𝑈 𝑧 + 𝑆𝑒 ⋅ 𝐹𝑒 𝑧 , with 

𝑆𝑒 = 𝑮𝑦𝑓 𝑧 =
1
0
,i.e. the fault acts only on the 1° output (1° speed sensor)

𝑮𝑦𝑢 𝑧 =

1.184 𝑧 + 1.184

𝑧2 − 0.9852 𝑧 + 2.943 ⋅ 10−5
⋅ 1

1.184 𝑧 + 1.184

𝑧2 − 0.9852 𝑧 + 2.943 ⋅ 10−5
⋅ 0.99𝑝 ×𝑚𝑢

2 × 1

𝑮𝑦𝑑 𝑧 =

−123.6𝑧 + 0.003637

𝑧2 − 0.9852 𝑧 + 2.943 ⋅ 10−5
⋅ 1

−123.6𝑧 + 0.003637

𝑧2 − 0.9852 𝑧 + 2.943 ⋅ 10−5
⋅ 0.99𝑝 ×𝑚𝑑

2 × 1

𝑝 × 𝑚𝑓

2 × 1
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A state space realization of 𝑮𝑦𝑢 𝑧 leads to

𝐴 =
0.9851 0.0021
0.0019 0𝑛 × 𝑛

2 × 2

𝐶 = −7.7413 18.95
𝑝 × 𝑛

1 × 2

𝐵 =
−0.3087
−0.1275𝑛 × 𝑚𝑢

2 × 1

𝐷 =
0
0𝑝 ×𝑚𝑢

2 × 1

Parity space: DC motor example input decoupling

𝐵𝑑 =
15.9988
0.0315𝑛 × 𝑚𝑑

2 × 1

𝐷𝑑 =
0
0𝑝 ×𝑚𝑑

2 × 1

𝐵𝑓 =
0
0𝑛 ×𝑚𝑓

2 × 1

𝐷𝑓 =
1
0𝑝 × 𝑚𝑓

2 × 1

𝐻𝑜,𝑠 =

−7.7413 18.9468
−7.6639
−7.6079
−7.5319
−7.4950
−7.4200

9.3634
−0.0156
−0.0154
−0.0156
−0.0154

𝑝 𝑠 + 1 × 𝑛

2 2 + 1 × 2

𝐻𝑢,𝑠 =

0 0 0
0

1.1842
1.1723
2.3508
2.3273

0
0
0

1.1842
1.1723

0
0
0
0
0

𝑝 𝑠 + 1 ×𝑚𝑢 𝑠 + 1

2 2 + 1 × 1(2 + 1)

𝐻𝑓,𝑠 =

1 0 0
0
0
0
0
0

0
1
0
0
0

0
0
0
1
0

2 2 + 1 × 1(2 + 1)

𝑝 𝑠 + 1 × 𝑚𝑓 𝑠 + 1

𝐻𝑑,𝑠 =

0 0 0
0

−123.5527
−122.3172
−121.7180
−120.5008

0
0
0

−123.5527
−122.3172

0
0
0
0
0

𝑝 𝑠 + 1 ×𝑚𝑑 𝑠 + 1

2 2 + 1 × 1(2 + 1)
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We want to solve for 𝒗𝑠 the following problem:

Parity space: DC motor example input decoupling

𝒗𝑠
𝑇𝐻𝑓,𝑠 ≠ 𝟎 𝒗𝑠

𝑇 𝐻𝑜,𝑠 𝐻𝑑,𝑠 = 𝟎and

We can recast it in the standard form for solving linear systems: 𝐻𝑜,𝑠 𝐻𝑑,𝑠 𝑇𝒗𝑠 = 𝟎

This system is homogeneous admits always the particular solution 𝒗𝑠
𝑜 = 𝟎. If the

condition rank 𝐻𝑓,𝑠 𝐻𝑜,𝑠 𝐻𝑑,𝑠 > rank 𝐻𝑜,𝑠 𝐻𝑑,𝑠 holds, one way to obtain a nicer

solution is to add a solution from the nullspace of 𝐻𝑜,𝑠 𝐻𝑑,𝑠 𝑇

Check a-posteriori if 𝒗𝑠𝑇𝐻𝑓,𝑠 ≠ 𝟎

𝒗𝑠
dec = 𝒗𝑠

0 + null 𝐻𝑜,𝑠 𝐻𝑑,𝑠 𝑇 ⋅ 𝛼1…𝑎𝑛𝑠
𝑇

• 𝑎 ∈ ℝ
• 𝑛𝑠: dimension

of null space



/10280

Always check the solution!

𝒗𝑠
dec 𝑇

𝐻𝑜,𝑠 𝐻𝑑,𝑠 =

= −0.9900 1 −1.9800 2 −2.9700 3 ⋅

−7.7413 18.9468
−7.6639
−7.6079
−7.5319
−7.4950
−7.4200

9.3634
−0.0156
−0.0154
−0.0156
−0.0154

0 0 0
0

−123.5527
−122.3172
−121.7180
−120.5008

0
0
0

−123.5527
−122.3172

0
0
0
0
0

= 0 0 0 0 0 0 CORRECT! ☺

Parity space: DC motor example input decoupling

𝒗𝑠
dec 𝑇

𝐻𝑓,𝑠 = −0.99 1 −1.98 2 −2.97 3

1 0 0
0
0
0
0
0

0
1
0
0
0

0
0
0
1
0

= −0.99 −1.98 −2.97 ≠ 0 OK! ☺
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Parity space: DC motor example input decoupling
We can now compare the results of the decoupled parity vector 𝒗𝑠dec, with respect to

the not decoupled parity vector 𝒗𝑠

Residual with 𝑑 𝑡 = 𝑓 𝑡 = 0
Residual with 𝑑 𝑡 = 𝑊𝑁 0, 𝜆2

𝜆2 s. t. SNR = 1 , 𝑓 𝑡 = 0

Residual with 𝑑 𝑡 = 𝑊𝑁 0, 𝜆2

𝜆2 s. t. SNR = 1 , 𝑓 𝑡 = 1 ⋅ step 𝑡
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1. Schematic of the approach

2. Dynamical systems

3. Parity space approach

4. Diagnostic observer

5. Application to EMA fault detection
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Diagnostic observer
A disadvantage of the parity approach method is that it requires to store a sample of

past inputs and outputs at time 𝑡 − 1,… , 𝑡 − 𝑠, in order to compute the residual signal at

the current time 𝑡. The implementation is non-recursive

It is possible to employ a different residual generator scheme, known as diagnostic

observer, by using the designed parity vector 𝒗𝑠

This allows to employ a recursive implementation, s.t. 𝑟(𝑡) is computed from 𝑟 𝑡 − 1

A common strategy based on «parity space design, observer-based implementation»

is vastly used
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Diagnostic observer
A diagnostic observer can be formulated as the following dynamical system

൞

𝒎 𝑡 + 1 = 𝐺 ⋅ 𝒎 𝑡 + 𝐻 ⋅ 𝒖 𝑡 + 𝐿 ⋅ 𝒚 𝑡

𝑟 𝑡 = −𝑤 ⋅ 𝒎 𝑡 − 𝑞 ⋅ 𝒖 𝑡 + 𝑣 ⋅ 𝒚 𝑡
1 × 1

𝑠 × 𝑠 𝑠 × 𝑚𝑢 𝑚𝑢 × 1

1 × 𝑠

𝑠 × 𝑝 𝑝 × 1

𝑚𝑢 × 1

𝑠 × 1 𝑠 × 1

𝑠 × 1 1 ×𝑚𝑢 𝑝 × 11 × 𝑝

We can interpret the quantity −𝑤 ⋅ 𝒎 𝑡 − 𝑞 ⋅ 𝒖 𝑡 as an estimate for 𝑣𝒚 𝑡 . In this way, the

residual signal reads as 𝑟 𝑡 = ො𝑦 𝑡 − 𝑣𝑦 𝑡 . Notice how ො𝑦 𝑡 depends on 𝒎 𝑡 , which in

turn depends on 𝑦 𝑡 − 1 .

For this reason, observer approaches are known as closed-loop approaches. This give

them more robustness with respect to modeling errors
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Diagnostic observer
Let 𝒗𝑠𝑇 = 𝒗𝑠,0

𝑇 𝒗𝑠,1
𝑇 ⋯ 𝒗𝑠,𝑠

𝑇 , be a parity vector, 𝒗𝑠 ∈ ℝ𝑝 𝑠+1 ×1, 𝒗𝑠 ∈ 𝑃𝑠. Then, we have:

𝐺 = 𝐺0 𝒈 𝐺0 =

0
1
⋮
0
0

0
0
⋱
⋯
⋯

⋯
0
⋱
1
0

0
0
⋮
0
1

𝑠 × 𝑠 − 1

𝒈 =

𝑔1
𝑔2
⋮
𝑔𝑠

1 × 𝑝

𝐻

𝑞
=

𝒗𝑠,0 + 𝑔1𝒗𝑠,𝑠
𝒗𝑠,2 + 𝑔2𝒗𝑠,𝑠

⋮
𝒗𝑠,𝑠 + 𝑔3𝒗𝑠,𝑠

𝒗𝑠,𝑠

𝒗𝑠,1
𝒗𝑠,2
⋮

𝒗𝑠,𝑠
𝟎

𝒗𝑠,2
⋯
⋱
𝟎
𝟎

⋯
⋯
⋱
⋯
⋯

𝒗𝑠,𝑠−1
𝒗𝑠,𝑠
⋮
𝟎
𝟎

𝒗𝑠,𝑠
𝟎
⋮
𝟎
𝟎

𝐷
𝐶𝐵
𝐶𝐴𝐵
⋮

𝐶𝐴𝑠−2𝐵
𝐶𝐴𝑠−1𝐵

𝑠 × 𝑚𝑢

1 ×𝑚𝑢

𝑠 + 1 ×𝑚𝑢

1 × 𝑝 𝑠 + 1

𝑠 × 𝑝 𝑠 + 1

𝑝 𝑠 + 1 × 𝑚𝑢

𝐿 = −

𝒗𝑠,0
⋮

𝒗𝑠,𝑠−1
− 𝒈 ⋅ 𝒗𝑠,𝑠

𝑠 × 𝑝

𝑠 × 𝑝

1 × 𝑝𝑠 × 1

𝒘 = 0 ⋯ 1
1 × 𝑠

𝒗 = 𝒗𝑠,𝑠
1 × 𝑝
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Diagnostic observer

The vector 𝒈 in the matrix 𝑮 is an additional degree of freedom given by the observer

formulation. It can be used to assign a desired dynamic to the observer

When 𝒈 = 𝟎, then the DO formulation is analogous to the parity space design

൞

𝒎 𝑡 + 1 = 𝐺 ⋅ 𝒎 𝑡 + 𝐻 ⋅ 𝒖 𝑡 + 𝐿 ⋅ 𝒚 𝑡

𝑟 𝑡 = −𝒘 ⋅ 𝒎 𝑡 − 𝒒 ⋅ 𝒖 𝑡 + 𝒗 ⋅ 𝒚 𝑡
1 × 1

𝑠 × 𝑠 𝑠 × 𝑚𝑢 𝑚𝑢 × 1

1 × 𝑠

𝑠 × 𝑝 𝑝 × 1

𝑚𝑢 × 1

𝑠 × 1 𝑠 × 1

𝑠 × 1 1 ×𝑚𝑢 𝑝 × 11 × 𝑝

The obtained residual generator is a dynamical system (a filter), that takes as input the

system inputs 𝒖 𝑡 and outputs 𝒚 𝑡 , and get as output the residual signal 𝑟 𝑡
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Diagnostic observer: DC motor
We now apply the DO scheme using the decoupled parity vector 𝒗𝑠dec previously found.

Denote with 𝑸 𝑧 the transfer function of the residual generator , and let 𝒈 = 𝟎

𝑸 𝑧 =

−8.882 ⋅ 10−16

𝑧2

2.97𝑧2 − 1.98𝑧 − 0.99

𝑧2

3𝑧2 − 2𝑧 + 1

𝑧2

3 × 1

• This filter has 3 inputs and 1 output

• 1° input: 𝑢 𝑡 - 2nd input: 𝑦1 𝑡 - 3rd input: 𝑦2 𝑡 ,

where 𝒚 𝑡 =
𝑦1 𝑡

𝑦2 𝑡

• Output: residual signal 𝑟 𝑡
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Compare the results with the parity base approach

Residual with 𝑑 𝑡 = 𝑓 𝑡 = 0 Residual with 𝑑 𝑡 ≥ 10 = 𝑊𝑁 0, 𝜆2

𝜆2 s. t. SNR = 1 , 𝑓 𝑡 = 0
Residual with 𝑑 𝑡 ≥ 10 = 𝑊𝑁 0, 𝜆2

𝜆2 s. t. SNR = 1 , 𝑓 𝑡 ≥ 10 = 1 ⋅ step 𝑡

Diagnostic observer: DC motor
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1. Schematic of the approach

2. Dynamical systems

3. Parity space approach

4. Diagnostic observer

5. Application to EMA fault detection
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The Reliable Electromechanical actuator for PRImary SurfacE with health monitoring is a

H2020 project which aims to design new EMA for flight actuation systems with HM

capabilities

The REPRISE project

This project has received funding from the
the Clean Sky 2 Joint Undertaking under
the European Union’s Horizon 2020
research and innovation programme under
grant agreement No 717112 (project
acronym: REPRISE).
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The following activities were carried out to develop a model-based fault diagnosis

method:

• ҧ𝑥 𝑡 : position reference
• 𝑥 𝑡 :measured position2. Estimation of the EMA closed-loop transfer function 𝐺𝑦𝑢 𝑧 =

𝑋 𝑧

ത𝑋 𝑧

3. Linear residual generator design based on parity space and diagnostic observer

1. Experimental data acquisition (with endurance and degradation of ballscrew

component)

The REPRISE project
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Electro Mechanical
actuatorLinear motor

Load cell

Optical 
encoder

Control panel

LVDT 
sensor

Nut

Screw

BallsMeasurements:

1. EMA Phase currents

2. EMA LVDT position

3. Linear motor position

4. EMA Reference position

5. Load cell

Test bench layout
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Measurements:

1. EMA Phase currents

2. EMA LVDT position

3. Linear motor position

4. EMA Reference position

5. Load cell

Test bench layout
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“Hammered” balls, “indented” recirculation circuits in ballscrew,“scratched” nut thread

94

Ballscrew degradation
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EMA closed-loop model

𝑋 𝑧

ത𝑋 𝑧
= 𝐺 𝑧 =

0.06892 − 0.1732𝑧−1 + 0.1266𝑧−2

1 − 1.624𝑧−1 + 0.6467𝑧−2
• ҧ𝑥 𝑡 : position reference

• 𝑥 𝑡 : position measure LVDT

Identification method:

1. Multisine excitation

2. Nonparametric estimate of the Best

Linear Approximation (BLA)

3. Parametric estimate fitting FRF data
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Fault behaviour
When the degradation took over, the EMA undergone small-jams during the operation

The output position signal, as measured by the LVDT sensor, shows constant value. We

modeled the fault as an actuator fault.

Multisine position reference Output position (LVDT)
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Residual generator
Residual

generator
𝑸(𝑧)

𝑢(𝑡)

𝑦(𝑡)

𝑟(𝑡) Residual
evaluation

ǁ𝑟(𝑡) Lowpass
filter

𝜃(𝑡)
Threshold

𝜄(𝑡)
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Residual generator
Residual

generator
𝑸(𝑧)

𝑦(𝑡)

𝑟(𝑡) Residual
evaluation

ǁ𝑟(𝑡) Lowpass
filter

𝜃(𝑡)
Threshold

𝜄(𝑡)
𝑢(𝑡)
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Residual generator
Residual

generator
𝑸(𝑧)

𝑦(𝑡)

𝑟(𝑡) Residual
evaluation

ǁ𝑟(𝑡) Lowpass
filter

𝜃(𝑡)
Threshold

𝜄(𝑡)
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Residual generator
Residual

generator
𝑸(𝑧)

𝑦(𝑡)

𝑟(𝑡) Residual
evaluation

ǁ𝑟(𝑡) Lowpass
filter

𝜃(𝑡)
Threshold

𝜄(𝑡)
𝑢(𝑡)
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Residual generator

𝑟 𝑡 = 𝑟(𝑡)
𝐻 𝑧 =

0.1139

𝑧 − 0.8861

𝜔𝑡 = 9.38 rad/s

𝜏 = 1.55

Residual
generator

𝑸(𝑧)
𝑦(𝑡)

𝑟(𝑡) Residual
evaluation

ǁ𝑟(𝑡) Lowpass
filter

𝜃(𝑡)
Threshold

𝜄(𝑡)
𝑢(𝑡)

𝐽 𝜔𝑡 , 𝑠 = false_alarms 𝜔𝑡 , 𝑠 ⋅ 𝛼 + missed_alarms 𝜔𝑡, 𝑠 ⋅ 𝛽

The cut frequency of the filter and the length of the parity vector were optimized by

minimizing a cost function, over a certain time, of the type:

𝑸(𝑧)
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