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Supervised vs. unsupervised

In supervised learning, we have a

dataset 𝒟 = 𝒙 1 , 𝑦 1 ,… , 𝒙 𝑁 , 𝑦 𝑁
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Clusters

In unsupervised learning, we have a

dataset 𝒟 = 𝒙 1 , ? , … , 𝒙 𝑁 , ?
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Goals of unsupervised learning
The main questions that unsupervised learning can answer are:

1. Can we discover subgroups among the variables or among the observations?

✓ Subgroups of patients with a disease grouped by their gene expression measurements

✓ Movies grouped by their ratings, assigned by movie viewers

✓ Groups of shoppers characterized by their browsing and purchase histories

2. Is there an informative way to visualize the data?

✓ Find transformations which enhance certain data characteristics

✓ Reduce the dimensionality of the data to visualize them in a 2-D plot
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Motivation
Unsupervised learning presents some nice properties:

• It is often easier to obtain unlabeled data than labeled data

• Clustering can be used to perform collaborative filtering, a technique used in

recommendation systems

✓ need to perform a dedicated experiment that can costly or disruptive

✓ difficulty to assess the overall sentiment of a movie review

• If data pertain naturally into different groups, than observations in each group can

have their own characteristic. In this case, a different supervised model can be

trained specifically for the data in each group
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Sales 
volatility

Sales 
volumeWhy we want to find groups (clusters):

• Treat «similar» objects in the same way

• Treat «different» objects differently

Suppose we have several SKUs in stock

• Horses: make-to-stock reorder strategy

• Crickets: make-to-order reorder strategy

• Bulls: reorder strategy case-by-case

Horses

Crickets

Bulls

Motivation
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Text mining 

• Cluster documents for related search

• Cluster words for query suggestion 

Recommender systems and advertising 

• Cluster users for item/advertising recommendation 

Image search

• Cluster images for similar image search and duplication detection

• Image compression

Motivation
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K-means in action

𝐾 = 21. Choose the number of clusters 𝐾

2. Randomly initialize 𝐾 cluster centroids

3. Assign each instance to the closest

centroid

5. Iterate over 3. and 4. until there are no

improvements

4. Re-estimate the centroid of each cluster

𝑥2

𝑥1
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K-means in action

𝐾 = 21. Choose the number of clusters 𝐾

2. Randomly initialize 𝐾 cluster centroids

3. Assign each instance to the closest

centroid

5. Iterate over 3. and 4. until there are no

improvements

4. Re-estimate the centroid of each cluster
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K-means algorithm
The 𝐾-means algorithm is an iterative method which provides a solution to the

clustering problem

The aim of 𝐾-means is to minimize the total sum of the squared distances of every 

point from its corresponding cluster centroid

Inputs:

• The number of clusters 𝐾

• The dataset 𝒟 = 𝒙 1 , 𝒙 2 ,… , 𝒙 𝑁 , 𝒙 ∈ ℝ𝑑×1

Notice how the label 𝑦 is not required to perform the clustering procedure 
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K-means algorithm
The steps of the 𝐾-means algorithm are:

1. Randomly initialize K cluster centroids 𝝁1, 𝝁2,… ,𝝁𝐾 ∈ ℝ𝑑×1

2.   Repeat

2.1 For 𝑛 = 1 ∶ 𝑁 #loop through each data point

𝑐𝑛 = index of the cluster centroid closest to 𝒙(𝑛)

2.2 For 𝑘 = 1 ∶ 𝐾 #loop through each cluster

𝝁𝑘 = average of points assigned to cluster 𝑘

The steps 2.1 and 2.2 are repeated until the centroids do not change
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K-means algorithm
The 𝐾-means can be viewed as a minimization problem. Define

• 𝑐𝑛: index of the cluster to which example 𝒙𝑛 is currently assigned, 𝑐𝑛 ∈ 1,2,… , 𝐾

• 𝝁𝑘: cluster centroid 𝑘, 𝝁𝑘 ∈ ℝ𝑑

• 𝝁𝑐𝑛: cluster centroid of the cluster to which example 𝒙𝑛 has been assigned

Distortion cost function

𝐽 𝑐1, … , 𝑐2, 𝝁1, … , 𝝁𝐾 =
1

𝑁
෍

𝑛=1

𝑁

𝒙𝑛 − 𝝁𝑐𝑛
2

The minimization of this cost function is computationally difficult (NP-hard). For this 

reason, greedy algorithms are used that converge to a local optimum
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K-means algorithm
2.   Repeat

2.1 For 𝑛 = 1 ∶ 𝑁

𝑐𝑛 = index of the cluster centroid closest to 𝒙(𝑛)

2.2 For 𝑘 = 1 ∶ 𝐾

𝝁𝑘 = average of points assigned to cluster 𝑘

The distortion cost function 𝐽 𝑐1, … , 𝑐2, 𝝁1, … , 𝝁𝐾 decreases at every step

→ Minimize 𝐽 … with respect to 𝑐1, 𝑐2, … , 𝑐𝑁 while holding 𝝁1, 𝝁2, … , 𝝁𝑁 constant

→ Minimize 𝐽 … with respect to 𝝁1, 𝝁2, … , 𝝁𝑁 while holding 𝑐1, 𝑐2, … , 𝑐𝑁 constant

If, at the end of the procedure, a cluster has no points:

• Eliminate the cluster (end with 𝐾 − 1 clusters)

• Re-initialize the cluster centroids (if you need 𝐾 clusters)
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Random initialization
The initialization of the centroids is done randomly. A recommended way is:

• Randomly pick 𝐾 training examples

• Set 𝝁1, 𝝁2,… , 𝝁𝐾 equal to these 𝐾 examples

Try multiple random initializations (ex. Try 20-50 initializations and keep the best in terms 

of some clustering metrics, e.g. the 𝐾-means cost function)

• Pick the clustering that gave lowest 𝐽 𝑐1, … , 𝑐2, 𝝁1, … , 𝝁𝐾

• With 𝐾 = 2 − 10, trying a high number of initializations can improve performance

• With 𝐾 > 10 − 100, multiple initializations do not change a lot the final result. The first 

clustering should be a fairly decent solution

A different initialization may lead

to a different clustering result
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K-means for non-separated clusters
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Large

Clustering can be useful even when the clusters are not so separated

Consider a t-shirt producer that wants to

know which shirt size to produce

By clustering its customers in three groups,

he knows he has to satisfy the people in each

cluster with that shirt size

This is an example of market segmentation
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Chosing the number of clusters
The number of clusters 𝐾 should be dictated by problem understanding:

• However, there exist heuristics to choose 𝐾

• In the T-shirts example, ask: if I have 5

clusters, how well they fit the customers?

• How many shirts can I sell? Will the

customers be happier?
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Hierarchical clustering

It is a clustering method which seeks to build a hierarchy of clusters. Two strategies:

• Agglomerative: in the first step each sample represent a cluster. Bottom-up approach

• Divisive: only one big cluster which represents all the data at the beginning. Top-down

approach

• Hierarchical clustering does not need a pre-specified number of clusters

• Results do not depend on any initialization

• 𝐾-means is faster but does not work well with not spherical clusters

• Hierchical clustering results can be more intuive to visualize (especially in high dimensions)

Differences with respect to 𝐾-means:
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Hierarchical clustering - agglomerative

1. Assign a cluster to each sample
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Hierarchical clustering - agglomerative
1 cluster

2 clusters

3 clusters

4 clusters

5 clusters

1. Assign a cluster to each sample

2. Combine the two closest clusters (choose 

your favorite distance method)

3. Repeat step 2.

4. Show the results using a dendogram
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Hierarchical clustering - agglomerative

The distance metric used can 

lead to different dendograms

• Euclidean distance

• Correlation

Observations that fuse at the very bottom of the tree: quite similar to each other

Observations that fuse close to the top of the tree: quite different to each other
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Suppose you are in charge of a marketing campaign for a Telco company. You have to 

decide which offers to give to your customers, based on their usage behaviour data

33

The dataset contains 𝑁 = 1000 customers. The 𝑑 = 5 variables for each client are:

• call: average number of call time hours per month 

• intern: average number of international calls hours per month

• text: average number of text messages per month

• data: average number data used in GB per month

• age: age of the customer

Example: marketing segmentation
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First try to have a look at the data. Plot each combination of 2 variables grouped by age

34

Example: marketing segmentation

• Seasoned people call less

• Young people text more

• Young people don’t do international
calls

• High data usage seems correlated to 
high text usage

• Youg people call less but use data 
more

• …
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Let’s first apply hierarchical clustering, aiming at discovering 8 different groups

35

Group Mean calls Mean intern Mean text Mean data Mean age Proportion

Young adults 1.706 0.10394 509.42 3.7312 18.953 25.4%

Silver 1.0323 0.20451 21.887 0.20897 60.826 19.5%

Pro 5.0681 1.0149 26.085 26.085 46.69 18.4%

30’s 3.1366 0.30876 309.51 1.9767 30.18 16.1%

40’s 2.2965 0.10391 21.402 0.52043 35.598 9.2%

40’s 1.8552 0.97593 296.72 1.5111 37.185 5.4%

30’s 4.9832 0.74324 343.83 2.1332 29.118 3.4%

50’s 2.9569 0.56077 271.06 3.2804 53 2.6%

• Group «Silver»: low level of usage, but it is older

• Group «Pro»: lot of national anche international calls, few text messages

• Group «Young adults»: lot of text messages and data, young age

Example: marketing segmentation
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Some clusters seem very similar. Redo the clustering using only 5 groups

36

Group Mean calls Mean intern Mean text Mean data Mean age Proportion

Heavy users 3.0963 0.51731 307.61 2.0279 33.582 27.5%

Young adults 1.706 0.10394 509.42 3.7312 18.953 25.4%

Silver 1.0323 0.20451 21.887 0.20897 60.826 19.5%

Pro 5.0681 1.0149 26.085 2.0148 46.69 18.4%

Light users 2.2965 0.10391 21.402 0.52043 35.598 9.2%

• Group «Heavy users»: lot of calls, text and data

• Group «Young adults»: few calls, lot of text and date, low age

• Group «Silver»: low usage, seasoned

• Group «Pro»: lot of calls and data

• Group «Light users»: similar to the «silver» group, but younger

Example: marketing segmentation
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• Group «Heavy users»: lot of calls, text and data

• Group «Young adults»: few calls, lot of text and 

date, low age

• Group «Silver»: low usage, seasoned

• Group «Pro»: lot of calls and data

similar to the «silver» 

group, but younger

We can compare the groups using a radar plot

Example: marketing segmentation

Heavy users

Young adults

Silver Pro
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Principal Component Analysis motivation
Principal Component Analysis (PCA) can be used for different purposes:

• Data compression: project the data to a lower dimensionality (from ℝ𝑑 to ℝ𝑞 , 𝑞 < 𝑑 )

• Data visualization: visualize in a 2-D plot high-dimensional data

PCA produces a low-dimensional representation of a dataset:

• Finds linear combinations of the original features that have maximal variance

• The derived variables are mutually uncorrelated

• The derived variables can be used in supervised learning problems to speed up the 

computation
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Data compression
Reduce the data dimensionality from 𝑑 = 2 to 𝑞 = 1

• Highly redundant representation

• The compressed data retain the main
information

• Approximation but reduced space requirement
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𝑥1 and 𝑥2 are not perfectly
correlated due to different
measurement noise

𝒙 1 ∈ ℝ2 → 𝑧 1 ∈ ℝ

𝑧

𝒙 2 ∈ ℝ2 → 𝑧 2 ∈ ℝ

𝒙 𝑁 ∈ ℝ2 → 𝑧 𝑁 ∈ ℝ

⋮
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Data visualization
Suppose we want to explore the USarrest dataset1, which contains crime statistics per

100.000 residents in 50 USA states. The variables are:

1. Murder arrests (per 100.000)

2. Assault arrests (per 100.000)

3. Percent urban population

4. Rape arrests (per 100.000)

1https://forge.scilab.org/index.php/p/rdataset/source/tree/master/csv/datas
ets/USArrests.csv

State Murder Assault Urban pop Rape

Alabama 13.2 236 58 21.2

Alaska 10 260 48 44.5

Arizona 8.1 294 80 31

⋮ ⋮ ⋮ ⋮ ⋮

How to visualize a 4-dimensional dataset?

https://forge.scilab.org/index.php/p/rdataset/source/tree/master/csv/datasets/USArrests.csv
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Problem formulation

Onto which direction it is better to 

project the data? 

Pick the direction which minimizes the 

projection error. 

This direction is also that on which the 

data vary the most
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44
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PCA is NOT Linear regression

PCA Linear regression

45
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PCA algorithm
Inputs

• 𝑞: the number of dimensions to retain (can be 𝑞 = 𝑑)

• The training set 𝒟 = 𝒙1, 𝒙2, … , 𝒙𝑁 , 𝒙 ∈ ℝ𝑑 (do not consider dummy variables 𝒙0 = 1) 

Data pre-processing

• Remove the feature (column) mean for each column of the data matrix 𝑋 ∈ ℝ𝑁×𝑑

• Each feature now has mean 0 and standard deviation 1 

• Standardize each feature element for the respective feature standard deviation

• Define the normalized data matrix as ෨𝑋 ∈ ℝ𝑁×𝑑

46
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PCA algorithm
Perform a Singular Value Decomposition (SVD) of the matrix ෨𝑋 ∈ ℝ𝑁×𝑑

෨𝑋 = 𝑈𝑆𝑉𝑇

𝑈 =

⋯

⋮ ⋱ ⋮

⋯

𝑆 =

⋯

⋮ ⋱ ⋮

⋯

𝑉𝑇 =
⋯

⋮ ⋱ ⋮
⋯𝑁 ×𝑁 𝑁 × 𝑑 𝑑 × 𝑑

• The columns 𝐮1, 𝐮2, … , 𝐮𝑁 of 𝑈 form an orthonormal basis of ℝ𝑁

• The columns 𝐯1, 𝐯2, … , 𝐯𝑑 of 𝑉 form an orthonormal basis of ℝ𝑑

• The diagonal elements 𝑠1, 𝑠2, … , 𝑠min 𝑁,𝑑 in 𝑆 are nonnegative and called singular 
values of ෨𝑋

47
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PCA algorithm
From ෨𝑋 = 𝑈𝑆𝑉𝑇 we get 𝑉 =

| | |
𝐯1
|

𝐯2
|

⋯ 𝐯𝑑
|

∈ ℝ𝑑×𝑑

• The columns 𝐯1, 𝐯2, … , 𝐯𝑑 of 𝑉 are called principal component loadings and they are 

the eigenvectors of the covariance matrix Σ = 1

𝑁
෨𝑋𝑇 ෨𝑋

• Select the first 𝑞 ≤ 𝑑 columns of 𝑉, obtaining the reduced matrix 𝑉𝑞 ∈ ℝ𝑑×𝑞

• Compute the projected data 𝑍 = ෨𝑋𝑉𝑞 ∈ ℝ𝑁×𝑞 (principal component scores)

• It is possible to recover the original data, up to an approximation, by computing

෨𝑋𝑟 = 𝑍 ⋅ 𝑉𝑞
𝑇 ∈ ℝ𝑁×𝑑

48
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Choice of the number of the components
The singular values 𝑠1, 𝑠2, … , 𝑠min 𝑁,𝑑 in the matrix 𝑆 can be used to compute the data 

variance explained by each principal component

49

The percentage of variance explained by the 𝑗-th component is:

𝑒𝑗 =
𝑠𝑗
2

σ
𝑖=1
min 𝑁,𝑑

𝑠𝑖
2
⋅ 100

• Retain a number of components that explain a determined level of variance in the data

• Retain a fixed number of components

Choices:
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Example with the USarrest data
The first 2 principal component loadings for the USarrest dataset are the first 2

columns of the matrix 𝑉 ∈ ℝ4×4. Thus, 𝑉𝑞 ∈ ℝ4×2

50

State Murder Assault Urban pop Rape

Alabama 13.2 236 58 21.2

Alaska 10 260 48 44.5

Arizona 8.1 294 80 31

⋮ ⋮ ⋮ ⋮ ⋮

Feature PC 1 PC 2

Murder −0.5359 0.4182

Assault −0.5832 0.1880

UrbanPop −0.2782 −0.8728

Rape −0.5432 −0.1673

• It is possible to plot both the projected data and the new dimensions

• For example, the direction of the Murder feature is the direction of the line from the 

origin to the point [−0.5359, 0.4182]

PCA
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Biplot

51

The 1st loading vector gives similar weight on 

Assault, Murder, and Rape, and less weight 

on UrbanPop

• The 1st component roughly corresponds to a

measure of overall rates of serious crimes

The 2nd loading vector vector places most of 

its weight on UrbanPop and much less weight 

on the other three features

• The 2nd component roughly corresponds to

the level of urbanization of the state

Feature PC 1 PC 2

Murder −0.5359 0.4182

Assault −0.5832 0.1880

UrbanPop −0.2782 −0.8728

Rape −0.5432 −0.1673
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Biplot
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The crime-related variables (Murder,

Assault, and Rape) are located close to each

other, and that the UrbanPop variable is far

from the other three

• The crime variables are correlated with each 

other (states with high murder rates tend to 

have high assault and rape rates)

• The UrbanPop variable is less correlated

with the other three.

Feature PC 1 PC 2

Murder −0.5359 0.4182

Assault −0.5832 0.1880

UrbanPop −0.2782 −0.8728

Rape −0.5432 −0.1673
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Biplot
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We can observe that:

Feature PC 1 PC 2

Murder −0.5359 0.4182

Assault −0.5832 0.1880

UrbanPop −0.2782 −0.8728

Rape −0.5432 −0.1673

• states with large positive scores on the 1st

component, such as California, Nevada and
Florida, have high crime rates, while states
like South Dakota, with negative scores on
the first component, have low crime rates.

• California also has a high score on the 2nd

component, indicating a high level of
urbanization, while the opposite is true for
states like Mississippi.

• States close to zero on both components,
such as Virginia, have approximately average
levels of both crime and urbanization.


