
Lesson 11.

Computer vision - part II

Deep learning approaches
TEACHER

Mirko Mazzoleni

Michele Ermidoro

PLACE

University of Bergamo

DATA SCIENCE AND
AUTOMATION COURSE

MASTER DEGREE SMART
TECHNOLOGY ENGINEERING

/50

Outline

2

1. Convolutional neural networks

2. Object detection

3. Transfer learning

4. Hardware

5. Application to pneumonia detection using X-ray images

/50

Outline

3

1. Convolutional neural networks

2. Object detection

3. Transfer learning

4. Hardware

5. Application to pneumonia detection using X-ray images

/504

Computer vision tasks: reminder

Classification

What’s in the image?

CarPerson

Clock

Detection

What’s in the image? Where it is?

/505

Convolutional neural networks
A convolutional neural network (CNN, or ConvNet) is a class of deep neural networks,

most commonly applied to analyzing images

We have seen how convolving the image with filters

(or kernels) is an effective method to extract useful

information about the image (edges, corners, …) than

can be used as features for training a classifier

The main idea behind CNN is to learn the filters, instead of manually specifying them

• Each element in a filter is a number, and can be treated as a parameter to be learnt

-1 -1-1

-1 -18

-1 -1-1

Edge detection
filter

/506

Convolutional neural networks

≈5.1

1. Computational Power

2. Convolutional Neural

Networks (CNN)

Human
performance

/507

Alex-net structure

C
on

v
1

C
on

v
2

C
on

v
5

C
on

v
4

C
on

v
3

D
en

se
 8

D
en

se
 7

D
en

se
 6

In
p

u
t

Im
ag

e

O
u

tp
u

t

/508

Convolution (recap)
Convolution is the process of adding each element of the image to its local neighbors,

weighted by the kernel.

Kernel 𝑘 ⋅,⋅

STEP 9

𝑦 2, 2 =

𝑗

𝑖

𝑥 𝑖, 𝑗 ⋅ 𝑘 2 − 𝑖, 2 − 𝑗

5 ⋅ 𝟏 + 6 ⋅ 𝟐 + 0 ⋅ 𝟏 + 8 ⋅ 𝟎
+ 9 ⋅ 𝟎 + 0 ⋅ 𝟎 + 0 ⋅ −𝟏
+ 0 ⋅ −𝟐 + 0 ⋅ −𝟏

1 2 1

0 0 0

-1 -2 -1

1 2 3

4 5 6

7 8 9 1 2 3

4 5 6

7 8 9

1 2 1

0 0 0

-1 -2 -1

-13

-18

13

-20

-24

20

-17

-18

17

Output 𝑦 ⋅,⋅

Input image 𝑥 ⋅,⋅

/509

Convolutional layer

32

32

3

5

5

3

Input image: 32 × 32 × 3
(height, width, depth)

Filter: 5 × 5 × 3

• Convolve the filter with the image (slide over the

image spatially)

• The filter should have the same depth of the

previous layer (in this case 3)

• Convolution preserves spatial structure (apply

the filters on spatially-neighboring «pixels» across all

axes)
RGB channels

/5010

Convolutional layer

32

32

3

Input image: 32 × 32 × 3

Filter #1: 5 × 5 × 3

1 number
Sum the 3 outputs of 3 5 × 5 filters convolved
with the 3 channels of the 32 × 32 image

Slide (convolve)
over spatial location

28

28

1

Output #1

/5011

Convolutional layer

32

32

3

Input image: 32 × 32 × 3

Filter #2: 5 × 5 × 3

Slide (convolve)
over spatial location

28

1

28

Output #1

Output #2

1 number
Sum the 3 outputs of 3 5 × 5 filters convolved
with the 3 channels of the 32 × 32 image

/5012

Convolutional layer

32

32

3

Slide (convolve)
over spatial location

If we have a 4 filters, we will have 4 outputs

We obtain a new
28 × 28 × 4 image

/50

In the previous step convolution step, we reduced the dimension from 32 to 28

7

3

13

Convolutional layer

3

7

• 𝟕 × 𝟕 image

• 𝟑 × 𝟑 filter

/50

In the previous step convolution step, we reduced the dimension from 32 to 28

7

14

Convolutional layer

7

• 𝟕 × 𝟕 image

• 𝟑 × 𝟑 filter

/50

In the previous step convolution step, we reduced the dimension from 32 to 28

7

15

Convolutional layer

7

• 𝟕 × 𝟕 image

• 𝟑 × 𝟑 filter

/50

In the previous step convolution step, we reduced the dimension from 32 to 28

7

16

Convolutional layer

7

We obtained a 𝟓 × 𝟓 output
• 𝟕 × 𝟕 image

• 𝟑 × 𝟑 filter

/50

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

17

Convolutional layer

9

9

• 𝟗 × 𝟗 image (7 × 7 image + 1 pixel padding)

• 𝟑 × 𝟑 filter

We obtained a 𝟕 × 𝟕 output

• In order to keep the output to the same

dimension of the input, we can add a frame

around the input image (the size depends on

the filter)

Padding

/50

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

18

Convolutional layer

9

• If we want to reduce the size of the

output, we can use the stride parameter

Stride

• 𝟗 × 𝟗 image (7 × 7 image + 1 pixel padding)

• 𝟑 × 𝟑 filter

• Stride: 2

9

/50

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

19

Convolutional layer

9

• 𝟗 × 𝟗 image (7 × 7 image + 1 pixel padding)

• 𝟑 × 𝟑 filter

• Stride: 2

Stride

9

/50

0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0 0

20

Convolutional layer

9

• 𝟗 × 𝟗 image (7 × 7 image + 1 pixel padding)

• 𝟑 × 𝟑 filter

• Stride: 2

We obtained a 𝟒 × 𝟒 output

Output =
𝑁 − 𝐹

𝑆
+ 1

• 𝑁: dimension of image [px]
• 𝐹: dimension of filter [px]
• 𝑆: stride length [px]

9

/5021

Convolutional layer

An activation map is a 28x28 sheet of

neuron outputs:

1. Each is connected to a small input region

2. All of them share the same parameters

(the parameters are the filters values)

Relu + bias1

Input image Output #1

=

Output #1Relu ⋅

28

28

1

28

28

1

32

32

3

/5022

Convolutional layer

32

32

3

28

28

5

Using 5 filters, we are stacking

neurons in a matrix 28 × 28 × 5

This means that, somehow, 5

different neurons are looking at the

same piece of image to produce an

output (each neuron will specialize to

recognize a certain property of the image)

/5023

Convolutional layer: summary
• Input: a volume of size 𝑊1 × 𝐻1 × 𝐷1

• Output: a volume of size 𝑊2 × 𝐻2 × 𝐷2

 𝑊2 =
𝑊1−𝐹+2𝑃

𝑆
+ 1

 𝐻2 =
𝐻1−𝐹+2𝑃

𝑆
+ 1

Common settings

• 𝐾 = powers of 2, e.g. 32, 64, 128, 512)
• 𝐹 = 3, 𝑆 = 1, 𝑃 = 1
• 𝐹 = 5, 𝑆 = 1, 𝑃 = 2
• 𝐹 = 5, 𝑆 = 2, 𝑃 = ? (whatever fits)
• 𝐹 = 1, 𝑆 = 1, 𝑃 = 0

• Hyperparameters

1. Number of filters 𝐾

2. Their spatial extent 𝐹

3. The amount of zero padding 𝑃

4. The stride 𝑆

 𝐷2 = 𝐾

• It introduces 𝐹 ⋅ 𝐹 ⋅ 𝐷1 weights per filter, for a

total of (𝐹 ⋅ 𝐹 ⋅ 𝐷1) ∙ 𝐾 weights (10 filters with a

dimension of 5 × 5 on an RGB image will have

5 ∙ 5 ∙ 3 ∙ 10 = 𝟕𝟓𝟎 parameters)

/5024

Pooling layer
This layer reduces the spatial size of the image representation

• It aims to reduce the amount of parameters and computation in the network, and

hence to also control overfitting MAX POOLING
2 × 2 filter
Stride of 2

The idea of max pooling is to
reduce the size keeping the
«mostly activated» neurons

/5025

Pooling layer
• Input: volume of size 𝑊1 × 𝐻1 × 𝐷1

• Output: a volume of size 𝑊2 × 𝐻2 × 𝐷2 where:

• 𝑊2 =
𝑊1−𝐹

𝑆
+ 1

• 𝐻2 =
𝐻1−𝐹

𝑆
+ 1

• 𝐷1 = 𝐷2

• Hyperparameters:

• Their spatial extent 𝐹

• The stride 𝑆

• Introduces zero parameters since it computes a fixed function of the input

• Different versions of pooling exist. The most used is max pooling. Other types are

average pooling and global pooling

/5026

Fully connected layer

These layers are just like the classic neural network layers, i.e. multi-layer perceptrons

(MLP) networks

• All the inputs are connected to all the outputs

They have to «map» the high level features, extracted by previous layers, to the output

Input Image 32 × 32 × 3
Stretched to 3072 × 1

3072

1

Output
(e.g. vector for classification)

10

1
𝚯

10 × 3072 weights

/5027

Alex-net structure

C
on

v
1

C
on

v
2

C
on

v
5

C
on

v
4

C
on

v
3

D
en

se
 8

D
en

se
 7

D
en

se
 6

In
p

u
t

Im
ag

e

O
u

tp
u

t

• The CNN computes a hierarchical

set of features

• These features are more complex

w.r.t. the manually derived ones

Figure credit: Zeiler and Fergus, “Visualizing and
Understanding Convolutional Networks”, ECCV 2014

/5028

Other networks
• GoogLeNet. Its main contribution was the development of an Inception Module that dramatically reduced

the number of parameters in the network (4M, AlexNet: 60M).

• VGGNet. Its main contribution was in showing that the depth of the network is a critical component for
good performance. Their final best network contains 16 CONV/FC layers and an extremely homogeneous
architecture that only performs 3x3 convolutions and 2x2 pooling from the beginning to the end.

• ResNet. Residual Network was the winner of ILSVRC 2015. It features special skip connections and a
heavy use of batch normalization. The architecture is also missing fully connected layers at the end of the
network (as of May 10, 2016).

Architecture # Params Size Accuracy Year #
operations

FW time
[GPU]

FW time
[CPU]

AlexNet 61 Milions 238 MB 80.2 % 2012 724 M 3.1 ms 0.29 s

Inception V1 7 Milions 70 MB 88.3 % 2014 1.43 B - -

VGGNet 138 Milions 528 MB 91.2 % 2014 15.5 B 9.4 ms 4.36 s

ResNet-50 25.5 Milions 99 MB 93 % 2015 3.9 B 11 ms 1.13 s

/50

Outline

29

1. Convolutional neural networks

2. Object detection

3. Transfer learning

4. Hardware

5. Application to pneumonia detection using X-ray images

/5030

Computer vision tasks: reminder

Classification

What’s in the image?

CarPerson

Clock

Detection

What’s in the image? Where it is?

/5031

How to use a CNN on your own data
GENERAL SCHEME

1. Gather your own data

 Data specific of the applicative domain (medical images, manufacturing production pieces,…)

 Label the data (you can use open source tool for labelling images)

2. Reuse a CNN

 You do not have to train a CNN from zero. You can download a pre-trained CNN and modify

(train) only the last fully connected layers (transfer learning)

3. Perform task (object classification or object detection)

/5032

Data gathering
The dataset must be:

1. As large as possible (200 items per class at least)

2. With the same object in different «conditions»

(background, lights)

3. With random objects along with the desired object

4. It should respect the application condition. Decide

if you need partial objects, overlapping and so on

5. With no label errors

6. Not too large (less training time)

You can create the dataset taking pictures (e.g. smartphone) or from Google Images

/5033

Labelling

10

We are building an object detection, so the label process will involve the creation of

bounding boxes (i.e. the label is not only the class but also the box coordinates)

We can use a lot of open-source software (LabelImg

https://github.com/tzutalin/labelImg)

It will create an XML file

associated to the image

<object>
<name>ten</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>

<xmin>145</xmin>
<ymin>68</ymin>
<xmax>303</xmax>
<ymax>225</ymax>

</bndbox>
</object>

We can use a lot of open-source software (LabelImg https:/github.com/tzutalin/labelImg)

/5034

Object detection
So far we learned how to do Image Classification. We can use the same models and

slide a window over the image

For each window, perform a classification

CONS: Not efficient. Different window shapes

in different positions. Huge amount of time

PROS: Effective

/5035

Object detection: classification-based methods
Region proposal: run the CNN only on image parts which can contain an object

Girshick et al, “Rich feature hierarchies for accurate object detection
and semantic segmentation”, CVPR 2014

Two-stage algorithms

1. A proposal algorithm is run to select

proposal regions

2. Perform classification with CNN

• R-CNN

• Fast-RCNN

• Faster-RCNN

/5036

Object detection: regression-based methods
NO region proposal: run the CNN in «pre-defined» areas

• Divide the image into a grid (7 × 7 in this case)

• Each grid cell predicts 𝐵 boxes (centered at

that grid cell) and their confidence for

containing and object of each class

• The most confident boxes are retained

• The input to the CNN is the whole image

• YOLO (You only look once)

• SSD (Single shot detection)

/50

Outline

37

1. Convolutional neural networks

2. Object detection

3. Transfer learning

4. Hardware

5. Application to pneumonia detection using X-ray images

/5038

Transfer learning

Pre-trained models are available

https://github.com/tensorflow/models/blob/master/resea
rch/object_detection/g3doc/detection_model_zoo.md

The weights we download, however,

are trained on some other dataset

(COCO, Pascal, Kitti, …)

Transfer learning

https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md

/5039

C
on

v
1

C
on

v
2

C
on

v
5

C
on

v
4

C
on

v
3

D
en

se
 8

D
en

se
 7

D
en

se
 6

In
p

u
t

Im
ag

e

O
u

tp
u

t

Transfer learning

• «Freeze» the convolutional layers, that do the feature extraction part

• Train the last full connected layer, that specializes to classify your data. You can

also train all the dense layers if you have enough data

Transfer learning re-uses the ability learnt in another task

/5040

Car object detection Golf car object detection

10000 images 100 images

Transfer learning
Example: object detection of golf cars. A network that learned how to detect cars can

probably generate features that are important also for detecting golf cars

/5041

Object detection pipeline
Create your own Dataset

Choose your network
structure (Faster-RCNN /

YOLO / SSD)

Modify the Fully Connected
layers

Do transfer training

Detect your objects

Calibrated
cropping

FEMALE
(25, 35)

MALE
(38, 43)

VGG-16 + Dense
layers

R-FCN D-Lib

People detection Face extraction
Age\gender
estimation

/50

Outline

42

1. Convolutional neural networks

2. Object detection

3. Transfer learning

4. Hardware

5. Application to pneumonia detection using X-ray images

/5043

Hardware
The hardware plays an important role, since most the times images have to be acquired

Garbage IN, garbage OUT: if we feed the networks with low quality images, we should

not expect good results

You need to consider, among other things:

• Light conditions (try to control the environment light with illuminators)

• Camera type (RGB, Near-infrared, …)

• Optics (360° field of view, 3D cameras,…)

• Communication interface (USB, PoE, VGA,…)

• Megapixels

Source: imagesspa.it

/50

Outline

44

1. Convolutional neural networks

2. Object detection

3. Transfer learning

4. Hardware

5. Application to pneumonia detection using X-ray images

/50

Disclaimer

This example is ONLY for educational purposes, in order to see how to
train and use a convolutional neural network in practice with real data.

I am NOT, by any means, trying to say that this should be an accurate or
valid system from a medical point of view.

Artificial intelligence tools show ALWAYS be supported by domain
knowledge from humans.

Again, this example does not claim to solve COVID-19 detection.

45

/5046

Pneumonia detection
Suppose to have at disposal X-ray images of lungs: Healthy people - Covid-19 disease

patients

This example is ONLY for educational purposes

/5047

Acknowledgments
• The COVID-19 X-ray image is curated by Dr. Joseph Cohen, a postdoctoral fellow at

the University of Montreal, see https://josephpcohen.com/w/public-covid19-dataset/

• The previous data contain only X-ray images of people with a disease. To collect

images of healthy people, we downloaded another X-ray dataset on the platform

Kaggle https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia

• The analysis is inspired from a tutorial by Adrian Rosebrock:

https://www.pyimagesearch.com/2020/03/16/detecting-covid-19-in-x-ray-images-with-keras-

tensorflow-and-deep-learning/

This example is ONLY for educational purposes

https://josephpcohen.com/w/public-covid19-dataset/
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://www.pyimagesearch.com/2020/03/16/detecting-covid-19-in-x-ray-images-with-keras-tensorflow-and-deep-learning/

/5048

Pneumonia detection
We want to use a CNN to perform classification:

• Healthy patients: class 0

• Patients with a disease: class 1

This example is ONLY for educational purposes

Followed procedure:

1. Split the dataset in train and test data

2. Data augmentation: generate new images by transforming the original training ones

3. Download VGG-16 net already trained on ImageNet dataset

4. Train only the final dense layers of the network (transfer learning)

/5049

Pneumonia detection

This example is ONLY for educational purposes

True label
Predicted covid label
Predicted healthy label

/5050

Pneumonia detection
Classification results

This example is ONLY for educational purposes

1 (p) 0 (n)

1 (Y)
True positive

11
False positive

0

0 (N)
False negative

1
True negative

11

Actual class

P
re

d
ic

te
d

c
la

ss

Sensitivity (recall, true positive rate)

True Positive

Actual Positive
=

True Positive

True Positive + False Negative
= 0.92

Specificity (true negative rate)

True Negative

Actual Negative
=

True Negative

False Positive + True Negative
= 1

• Accuracy: ≈ 96%

• Being able to accurately detect healthy patients with 100% accuracy is great

• We don’t want to classify someone as «negative» when they are «COVID-19 positive»

