

UNIVERSITÀ DEGLI STUDI DI BERGAMO

di Ingegneria Gestionale, dell'Informazione e della Produzione

Lesson 1.

Introduction

DATA SCIENCE AND AUTOMATION COURSE

MASTER DEGREE SMART TECHNOLOGY ENGINEERING

TEACHER Mirko Mazzoleni

PLACE University of Bergamo

Who I am

- Name: Mirko Mazzoleni
- **Studies:** Ph.D. Engineering and Applied Sciences at *University of Bergamo* (Control specialization) + Master degree Computer Engineering (CE) at *University of Bergamo*
- Currently: Assistant Professor @ University of Bergamo
 - ✓ System identification, machine learning, fault detection, condition monitoring
 - ✓ System identification and data analysis (Master Degree Computer Engineering)
 - ✓ Data science and automation (Master Degree Mechanical Engineering)
- Contact details:
 - ✓ <u>mirko.mazzoleni@unibg.it</u>
 - ✓ <u>https://mirkomazzoleni.github.io/</u>

- ✓ http://cal.unibg.it/ CAL research laboratory
- ✓ <u>https://www.facebook.com/calunibg/</u>

Course content

<u> Part I: Data science</u>

- 1. Introduction to data science
 - 1.1 The business perspective
 - 1.2 CRISP-DM process
 - 1.3 Supervised vs. unsupervised problems
- 2. Linear regression
- 3. Feasibility of learning
 - 3.1 Bias-Variance tradeoff
- 4. Logistic regression
- 5. Overfitting and regularization
 - 5.1 Validation and cross-validation

5.2 Performance metrics

6. Decision trees

7. Neural networks

8. Machine vision

- 8.1 Classic approaches
- 8.2 Convolutional neural networks and deep learning

9. Unsupervised learning

- 9.1 k-means clustering
- 9.2 Principal Component Analysis

10. Fault diagnosis

- 10.1 Model-based fault diagnosis
- 10.2 Signal-based fault diagnosis
- 10.3 Data-driven fault diagnosis

Course content

Part II: Automation

12. Introduction to industrial automation

13. Introduction to PLC

14. Ladder language

15. Structured text language

16. Automatic PLC code generation

17. Laboratory experience

A Dipartimento
 DI di Ingegneria Gestionale,
 O dell'Informazione e della Produzione

Evaluation

- Written exam 2 hours
- Theoretical open questions and exercises

Up to 25 points

+

• **[OPTIONAL]** Small data analysis project (groups of max 3 people)

Up to 6 points

1. Forecasting of sales volume (for food industry)

- Development of the data management platform
- Algorithm design
- Testing/validation

2. Image processing

Plant disease classification

Dipartimento
 di Ingegneria Gestionale,
 dell'Informazione e della Produzione

3. Fault diagnosis

Bearing inner race fault

Ballscrew jam in EMA $\int_{2}^{10} \int_{20}^{10} \int_{20}^{$

4. Industrial automation

ICT for remote mantainance

Automatic transplant machine

A Dipartimento
 di Ingegneria Gestionale,
 dell'Informazione e della Produzione

Outline

1. Introduction to data science

2. The business perspective and the CRISP-DM process

3. Supervised vs. unsupervised problems

A Dipartimento
 DI di Ingegneria Gestionale,
 IO dell'Informazione e della Produzione

Outline

1. Introduction to data science

2. The business perspective and the CRISP-DM process

3. Supervised vs. unsupervised problems

A Dipartimento
 DI di Ingegneria Gestionale,
 I dell'Informazione e della Produzione

Why

Business value created by the AI up to 2030 [1]

\$13 Trillions

Retail	\$0,8T
Travels	\$480B
Logistics	\$475B
Automotive & assembly	\$405B
Materials	\$300B
Advanced electronics & semiconductors	\$291B
Healthcare systems & services	\$267B
High tech	\$267B
Telecom	\$174B
Oil & gas	\$173B
Agricoulture	\$164B

• It is **difficult** to find an industrial sector **that will not benefit** from AI in the near future

Why

We will use the terms "machine learning", "data mining", "data science" quite interchangeably in this course

Data science has been deemed as the **sexiest job** of the 21st century

- Virtually every aspect of business is now open to data collection (operations, manufacturing, supply-chain management, customer behaviour, marketing campaigns)
- Collected information need to be **analyzed properly** in order to get **actionable results**
- A huge amount of data requires **specific infrastructures** to be handled
- A huge amount of data requires **computational power** to be analyzed
- We can let computers perform decisions given **previous examples**
- Rising of **specific job** titles

Learning examples

Recent years: stunning breakthroughs in computer vision applications

Learning examples

Recent years: stunning breakthroughs in **computer vision** applications

Dipartimento
 di Ingegneria Gestionale,
 dell'Informazione e della Produzione

What learning is about

Machine learning and data science are meaningful to be applied if:

- 1. A pattern exists
- 2. We cannot pin it down mathematically (an analytical solutions does not exists)

3. We have data on it

Assumption 1. and 2. are not mandatory:

- If a pattern does not exist, I do not learn anything
- If I can describe the pattern mathematically, I will not presumably learn the best relation
- The real constraint is assumption 3

Data types

Dr

The data can have different formats. The most typical is that of a table

House area(feet ²)	# bedrooms	Price (1000\$)	• AIM: predict house prices	
523	1	115		
645	1	150	Regression	
708	2	210		
1034	3	280	 The data can come from a 	
2290	4	355	databasa ar fram asy. Excel filos	
2545	4	440	database of from .csv, Excel files.	
Α		$B \implies$	Learn the relation from House area to Price	
Å		$B \longrightarrow$	Learn the relation from House area AND #bedrooms to Price	
UNIVERSITÀ DEGLI STUDI DI BERGAMO	to ia Gestionale, zione e della Produzione		17 /37	

Data types

Another type of data can be an **image**

Data are dirty

Garbage IN, garbage OUT

Data problems:

- Missing values
- Not correct values

Different data types

Images, audio, text

_	House area(feet ²)	# bedrooms	Price (1000\$)		
	523	1	115		
	645	1	0,001		
	708	unknown	210		
	1034	3	unknown		
	unknown	4	355		
	2545	unknown	440		
_		1			
Not structured data		Structur	ed data		

Machine learning vs. data science

House area (feet ²)	# bedrooms	# bathrooms	Recently renowed	Price (1000\$)	
523	1	2	No	115	
645	1	3	No	150	
708	2	1	No	210	
1034	3	3	Si	280	
2290	4	4	No	355	
2545	4	5	Si	440	
Machine learning	B				
		Bata Sol			
 Predict B given A 	Output: Cod	e and e and than the	 Houses with 3 bathrooms are more expensive than those with 2 bathrooms of the same size 		
 Running software (web site\ mobile app) 	program)	Recentl houses	y renovated 🛛 🛁 🛶	Output: Slide deck	

Machine learning vs. data science

Dipartimento
 di Ingegneria Gestionale,
 dell'Informazione e della Produzione

Outline

1. Introduction to data science

2. The business perspective and the CRISP-DM process

3. Supervised vs. unsupervised problems

A Dipartimento
 DI di Ingegneria Gestionale,
 IO dell'Informazione e della Produzione

Data-analytic thinking

Data-driven decision-making (DDD) refers to the practice of basing **decisions on the analysis of data**, rather than purely on intuition [2, 3]

- Some decisions can be made **automatically** (finance, recommendations)
- **Data engineering and processing** is a fundamental support to industrial analytics
- Data, and the capability to extract useful knowledge from data, should be regarded as **key strategic asset**
 - ✓ Need to invest to acquire the right data (even lose money)
 - Understand data science even if you will not do it

Approaching a data mining problem

Cross Industry Standard Process for Data Mining (CRISP-DM) <u>https://mineracaodedados.files.wordpress.com/2012/04/the-crisp-</u> <u>dm-model-the-new-blueprint-for-data-mining-shearer-colin.pdf</u>

Iteration is the rule rather the exception:

- Business understanding
- Data understanding
- Data preparation
- Modeling
- Evaluation
- Deployment

CRISP-DM: Business understanding

Cast the business problems into **one or more** data science problems

- Frame the problem such that one or more sub-problems involve building models for a **data mining task** (*classification, regression, probability estimation, and so on*)
- Think carefully about the **use scenario**
 - ✓ What exactly do we want to do?
 - ✓ How exactly would we do it?
 - ✓ What parts of this use scenario constitute possible data mining models?

CRISP-DM: Data understanding

Identify the available and needed data

- Costs/benefits of acquiring each source of data
- Are the data at disposal related to the business problem?
- Can we use a proxy for data that we can not have?

As data understanding progresses, the solution paths may differ

CRISP-DM: Data preparation

Clean and prepare data for use with algorithms

- Usually the algorithms we employ require data in a different format with respect to the available one
 - ✓ Convert string to numbers, infer missing data, import data from excel files, ...
- Data preprocessing/cleaning/labeling [3] (most of data science project time is spent here)
- Pay attention to not use historical data that will not be available when your model will be used

Data Preparation

CRISP-DM: Modeling

Estimate a mathematical model to extract pattern from data

- In most cases, standard algorithms can be directly applied on data
- The aim is to find a model in order **to use it on unseen data**
- The type of the model has to be chosen based on:
 - ✓ What data mining **task** we want to solve
 - ✓ Performance measures
 - ✓ Availability of **libraries** for deployement

CRISP-DM: Evaluation

Assess the validity of the results

- We could find patterns that exist only in the particular dataset that we have at disposal **(overfitting)**
- The devised solution and the model's decisions should the comprehensible by the stakeholders
- Usually evaluation is performed **before deploying**. In this case, build environments that **closely mimic** the real use scenario
- Evaluation can be performed also on-line (in production) [4]

CRISP-DM: Deployment

Put the model (or the data mining steps) into production

- Usually requires to **re-code** the model, to make it compatible with the existing technology
- This step can require quite **investment in time**. Usually the data science team builds a propototype that is then passed to the development team
- For this reason, it is suggested to involve a member of the development team in the early phases of the data science project
- Deployment can involve not only the final model, but also **previous phases** (data collection, model building, evaluation)

From business problems to data mining tasks

Each data science project is **unique**. The aim is to **decompose** the business problem into subtasks for which a **common approach** exists.

There are many machine learning algorithms. However, they address a **handful** of tasks:

- Classification and class probability estimation
- Regression
- Symilarity matching
- Clustering
- Co-occurrence grouping

- Profiling
- Link prediction
- Data reduction
- Causal modeling

Outline

1. Introduction to data science

2. The business perspective and the CRISP-DM process

3. Supervised vs. unsupervised problems

À Dipartimento
 Di di Ingegneria Gestionale,
 dell'Informazione e della Produzione

Supervised vs unsupervised methods

A specific data science task can be tackled via a **supervised** or **unsupervised** approach

"Do our customers naturally fall into different groups?"

There is no a specific target (or purpose) for the grouping. The aim is only to find **similarities** between individuals

<u>Supervised</u> $A \implies B$

"Can we find groups of customers who have particularly high likelihoods of canceling

their service soon after their contract expire?"

There is a specific target: find people who will leave when contract expires. In this case, **there must be** data on the **target**. The value of the target for an individual is called **label** or **class**. We need a dataset of people that **we know they left (labeled dataset)**

Supervised vs unsupervised methods

- Classification and class probability estimation
- Regression
- Causal modeling
- Symilarity matching
- Link prediction
- Data reduction
- Clustering
- Co-occurrence grouping
- Profiling

Supervised

Supervised or Unsupervised

Unsupervised

Business problems as data science examples

Supervised

Unsupervised

- Spam e-mail detection system
- Credit approval
- Recognize objects in images
- Find the relation between house prices and house sizes
- Predict the stock market

- Market segmentation
- Market basket analysis
- Language models (word2vec)
- Social network analysis
- Low-order data representations
- Movies recommendation

Supervised or unsupervised

Additional resources

MOOC

- Learning from data (Yaser S. Abu-Mostafa EDX)
- Machine learning (Andrew Ng Coursera)
- Deep learning (Andrew Ng Coursera)
- The analytics edge (Dimitris Bertsimas EDX)
- Statistical learning (Trevor Hastie and Robert Tibshirani Standford Lagunita)

Books

- Data science for business (Foster Provost, Tom Fawcett)
- An Introduction to Statistical Learning, with application in R (Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani)
- Neural Networks and Deep Learning (Michael Nielsen)
- Pattern Recognition and Machine Learning (Christopher Bishop)

References

- 1. <u>Notes from the AI frontier: Modeling the impact of AI on the world economy</u>, 2018.
- 2. Provost, Foster, and Tom Fawcett. "*Data Science for Business: What you need to know about data mining and data-analytic thinking*". O'Reilly Media, Inc., 2013.
- 3. Brynjolfsson, E., Hitt, L. M., and Kim, H. H. *"Strength in numbers: How does data driven decision making affect firm performance?"* Tech. rep., available at SSRN: <u>http://ssrn.com/abstract=1819486</u>, 2011.
- 4. Pyle, D. "Data Preparation for Data Mining". Morgan Kaufmann, 1999.
- 5. Kohavi, R., and Longbotham, R. "Online experiments: Lessons learned". Computer, 40 (9), 103–105, 2007.
- 6. Abu-Mostafa, Yaser S., Malik Magdon-Ismail, and Hsuan-Tien Lin. "*Learning from data*". AMLBook, 2012.
- 7. Andrew Ng. "Machine learning". Coursera MOOC. (https://www.coursera.org/learn/machine-learning)

A Dipartimento
 DI di Ingegneria Gestionale,
 IO dell'Informazione e della Produzione