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State and output movements

Given an input function 𝒖 𝑡 = $𝒖 𝑡 (t≥ 0), and the initial condition 𝒙!, we can
easily compute how state and output evolves throughout the time, for t> 0.
The functions $𝒙 𝑡 (t ≥ 0) and $𝒚 𝑡 (t ≥ 0) are respectively called state
movement and output movement.

Such movements can be computed iteratively.

$𝒙 𝑡 , t ≥ 0 is the state 
movement 

corresponding to the 
input $𝒖 𝑡

$𝒚 𝑡 , t ≥ 0 is the output 
movement 

corresponding to the 
input $𝒖 𝑡



State and output movements
Let the input function 𝒖 𝑡 = $𝒖 𝑡 (t≥ 0), be given by the sequence:

Then: 



Example 1: water tank

Ø Let: 𝐴 = 1𝑚", Δ𝑡 = 1𝑠, 𝑘 = 0.3 ⁄#!
$

Ø In order to find state and output movements, we need an initial 
condition and a control sequence: 
• Initial condition 𝑥 0 = 4𝑚
• Input 5𝑢(𝑡) = 0.5 ⁄#"

$, t ≥ 0



Example 1: water tank



Example 2: SIR model

Time step t =1 day

Iterations by 
computer simulations



Example 2: SIR model

Iterations by Matlab simulations



Equilibrium

Given a constant input function 𝒖 𝑡 = :𝒖 (t≥ 0), the state movements will
converge to an equilibrium state and output.

This implies that 𝑥 𝑡 + 1 = 𝑥 𝑡 .

This means that functions 𝒙 𝑡 (t ≥ 0) and 𝒚 𝑡 (t ≥ 0) converge to a constant 
value :𝒙 and :𝒚 which is solution of the following equation



Example 1: water tank

Ø In order to find the equilibrium
state and output, we run a
simulation with:
• Initial condition 𝑥 0 = 4𝑚
• Input 𝒖 = 0.5 ⁄#"

$, k ≥ 0

Ø After 80 steps, the state
converges to an equilibrium.



How to find the equilibrium?
Are simulations the best way to find an equilibrium?

Nop: we can also find the equilibrium analitically by solving

• Taking into account that :𝒖 = 0.5 ⁄#"
$, then

At the equilibrium the outlet flow is equal to the inlet flow
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Stability

ØBoth balls are in an 
equilibrium.

ØThe green ball is in a stable 
equilibrium.

ØThe orange ball is in a 
unstable equilibrium



Stability

ØThe green ball is in a stable equilibrium.
ØThe orange ball is in an unstable equilibrium.



Stability
ØIf an equilibrium is stable then if there is a small perturbation on the

initial condition then the system tends to reach the equilibrium.

ØStability is a property of the equilibrium point and not of the
system.

ØThe same system can have stable equilibrium and unstable ones (see
the previous slide).

ØStability is a local property of the equilibrium and it works for small
perturbations.



Stability: formal definition
Stability: The equilibrium point x=0 is locally stable if

ØThe equilibrium point x=0 is unstable if it is not 
stable.

Attractivity: The equilibrium point x=0 is attractive
if:

Asymptotic Stability: The equilibrium point x=0 is 
asymptotically stable if it is

Locally Stable + Attractive



Check if an equilibrium is stable

qIn general, not an easy problem to solve.

qFor linear time-invariant (LTI) system, the solution is quite
simple.
ØYou just need to check the eigenvalues of matrix A.

qFor a nonlinear time-invariant system, one can linearize it
about the equilibrium point and check stability of the
equilibrium using the method for LTI systems.
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LTI Systems
ØLTI stands for Linear Time-Invariant Systems.

ØThey are a very specific class of system.

ØThey are very simple to study and there is a lot of theory
about them.

ØIn a first approximation, they can explain a large number
of phenomena/processes.
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LTI Systems

In LTI systems, functions 𝑓(𝑥, 𝑢) and 𝑔(𝑥, 𝑢) are linear
functions of the form

SISO
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LTI Systems
The LTI systems can be rewritten in compact form

where
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Example

• The LTI systems

can be rewritten in compact form with

• SISO
• Order 2
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Movements
The movements of a discrete-time LTI systems can be computed
iteratively.
Given 𝒖 𝑡 ∀𝑡 ≥ 0 and 𝑥 0

Free movement

Forced 
movement
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Movements

ØThe free movement only depends on the initial condition

ØThe forced movement is forced by the input applied to the
system.

Free movement

Forced 
movement
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Output Movement
It is easy to see that

Free movement

Forced 
movement
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Superposition principle
Since LTI systems are linear systems, they enjoy the superposition
principle.
ØGiven two initial condition and , and given

then

Free movement
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Superposition principle

• Similarly, given two control sequences

and given , then

Forced movement
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Superposition principle
• Combining free and forced movement:

Same reasoning holds for the output movements
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Equilibrium
Consider the LTI system:

ØEquilibrium: constant solution to the difference equation.

The equilibrium is given by the solution to the previous linear
system (first eq. actually).
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Equilibrium
Let’s do the calculations:

If                              , then

The equilibrium is univocally defined 
by the control input:
Ø One equilibrium for each  

If                               , then

The system has infinite solutions or 
no solution.
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Static gain
Consider the case :

ØState equilibrium

ØOutput equilibrium:

• The term

is called static gain of the system.
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Remarks
ØIn an LTI system for each value of the input !𝑢 there is a unique

equilibrium (minor some degenerate cases).

ØThe static gain allows one to determine how the output
changes due to an incremental change in the input, once the
system has reached the steady state

Δ!𝑦 = 𝜇 ⋅ Δ!𝑢
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Example
𝐴 = 0.5 1

0 0.1 𝐵 = 3
0

𝐶 = 1 3 𝐷 = 5
• Check the determinant:

det 𝐼! − 𝐴 = det 𝐼! −
0.5 1
0 0.1 = det 0.5 −1

0 0.9 = 0.45 ≠ 0
• Compute the static gain:

𝜇 = 𝐶 ⋅ 𝐼! − 𝐴 "# ⋅ 𝐵 + 𝐷 = 1 3 ⋅ 0.5 −1
0 0.9

"#
⋅ 30 + 5 = 11

• Compute the equilibrium with H𝑢 = 2 (assuming null initial conditions):

J
𝑥# 𝑡 + 1 = 0.5 ⋅ 𝑥# 𝑡 + 𝑥$ 𝑡 + 3 ⋅ 𝑢 𝑡
𝑥$ 𝑡 + 1 = 0.1 ⋅ 𝑥$ 𝑡

𝑦 𝑡 = 𝑥# 𝑡 + 3 ⋅ 𝑥$ 𝑡 + 5 ⋅ 𝑢 𝑡

:𝒙 = 𝐼! − 𝐴 "# ⋅ 𝐵 ⋅ H𝑢 = 0.5 −1
0 0.9

"#
⋅ 30 ⋅ 2 = 12

0
H𝑦 = 𝜇 ⋅ H𝑢 = 11 ⋅ 2 = 22
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Example

Consider the LTI systems

ØCheck the determinant:

The system does not have a unique solution.

det 𝐼! − 𝐴 = det 𝐼! −
1 1
0 1 = det 0 −1

0 0 = 0
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Stability

Consider the  LTI system

and the equilibrium

ØIs it stable??? Let’s check the movements
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Stability

• Nominal movement

• Perturbated movement
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Stability

The perturbation 𝜹𝒙 𝑡 corresponds to the free movement with
initial condition 𝑥 0 = 𝜹𝒙𝟎 .

The perturbation 𝜹𝒙 𝑡 does not depend on the specific
equilibrium.

The entity of the perturbation depends only on the initial
perturbation and on the matrix 𝑨.
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Stability

Since the stability depends only on the behavior of the
perturbation 𝜹𝒙 𝑡 and since the perturbation does not depend
on the single equilibrium,

ØThe stability is a property of the entire system.

ØThe equilibriums of an LTI system are all stable or all unstable.

ØWe can talk of stable, asymptotically stable or unstable
systems.
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Classification
Based on the previous slide, we have 3 possibilities:

• A LTI system is asymptotically stable if

• A LTI system is stable if             is bounded 

• A LTI system is unstable if
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Example

Asymptotically stable 
1.

2. Asymptotically stable 
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Example

Unstable 
3.

4.
Stable

Bounded
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Summing up…

Given a first order (n=1) LTI system

Asymptotically stable 

Stable bounded

Unstable 
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Stability: Properties
1. In an asymptotically stable LTI system the free

movement tends to zero.

2. In an asymptotically stable LTI system the
asymptotic movement depends only on the
input

Goes to zero
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Stability: Properties

Goes to zero

3. An asymptotically stable LTI system tends to reach
the equilibrium for every initial condition.

Consider the equilibrium 𝑥̅, H𝑢 , then
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Stability: Properties

4. In an asymptotically stable LTI system there is one
and only one equilibrium for each 𝑢 𝑘 = $𝑢

Consider two different equilibrium states and their movements

Applying property 3, these movements necessarily converge to the same
equilibrium (since the equilibrium input is the same).
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Stability: Properties
5. In an asymptotically stable LTI system if the input

is constant than the output tends to a final value
By applying Property 3 the system converges to an equilibrium, by
property 1 the free movements is constant, then

6. In an asymptotically stable LTI system if the input
is bounded the output is also bounded
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Stability when 𝒏 ≥ 𝟏
In this case we look at the eigenvalues of the matrix A.

Given a matrix 𝐴 ∈ ℝ!×! the eigenvalue 𝜆 ∈ ℂ and the eigenvector 
𝒗 ∈ ℂ!×# are the value and the vector such that:

𝐴 ⋅ 𝒗 = 𝜆 ⋅ 𝒗

• There are always 𝑛 eigenvalues and eigenvectors

• If there is a complex eigenvalue there is always its conjugate 
(complex eigenvalues come in couple).

• The eigenvalues are the root of the characteristic polynomial:
𝜙 𝜆 = det 𝐴 − 𝜆 ⋅ 𝐼!
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Classification
Recalling the stability definitions:

• A LTI system is asymptotically stable if

• A LTI system is stable if              is bounded 

• A LTI system is unstable if

Then…
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Asymptotic stability vs Instability

An LTI system is asymptotically stable if and only if all the
eigenvalues 𝜆& of the matrix 𝐴 have norm strictly smaller than one:

∀𝑖, 𝜆" < 1 Asymptotically stable

Theorem 1

An LTI system is unstable if there is at least one eigenvalues 𝜆& of
the matrix 𝐴 with norm strictly greater than one:

∃𝑖	𝑠. 𝑡 𝜆" > 1 Unstable

Theorem 2
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Simple stability

An LTI system is simply stable if all the eigenvalues 𝜆& of the matrix 𝐴
have norm smaller than one and there is one and only one eigenvalue 
with norm equal to one (or a couple of complex eigenvalues):

∀𝑖, 𝜆" ≤ 1 ∃! 𝑖	𝑠. 𝑡. 𝜆" = 1 Simply stable

Theorem 3

1. A couple of complex eigenvalues counts as one eigenvalue. Therefore, if
all the eigenvalues have norm smaller than one except for a couple of
complex eigenvalues with norm equal to one the system is simply stable.

2. If there are more than one eigenvalues with norm equals to one the
system can be unstable or simply stable, more analysis is needed.

Remark
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Stability Region

Re

Im

𝟏−𝟏

𝒋

−𝒋

Stability 
region
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Example 

asymptotically stable
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Example 

unstable
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Example 

Simply stable
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Example 
Consider the following matrix 𝐴 of a LTI system

𝐴 = 1 − 𝛼 𝛽
0 0.1

Determine the values of 𝛼 and 𝛽 that make the system stable. The eigenvalues 

are: W𝜆# = 1 − 𝛼
𝜆$ = 0.1

Therefore, the system is asymptotically stable if and only if:

1 − 𝛼 < 1 ⇒ W 1 − 𝛼 < 1 ⇒ 𝛼 > 0
1 − 𝛼 > −1 ⇒ 𝛼 < 2 ⇒ 0 < 𝛼 < 2

Furthermore, the system is simply stable if:

1 − 𝛼 = 1 ⇒ W 1 − 𝛼 = 1 ⇒ 𝛼 = 0
1 − 𝛼 = −1 ⇒ 𝛼 = 2 ⇒ 𝛼 = 0	or	𝛼 = 2



1. Movements, equilibrium 

2. Stability

3. LTI systems: movements, equilibrium, stability

4. Linearization

5. Continuous time systems

Outline

57



58

What about nonlinear systems? 
Ø We cannot talk of stability of a nonlinear systems.

Ø Recall that stability is a local property, that holds in a neighborhood 
of an equilibrium point.

Ø For nonlinear systems, we want to check the stability property of the 
equilibrium (not the entire system).

Ø How to do that? We can linearize a system in a certain equilibrium 
and then study the stability of the obtained linearized system using 
the same tool as for LTI systems.
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Linearization
Take a nonlinear model.

Let’s say 𝑥̅, !𝑢 is an equilibrium, such that 𝑥̅ = 𝑓 ̅𝑥, H𝑢

Consider the Taylor expansion of 𝑓(𝑥, 𝑢) around such equilibrium.



60

Linearization
Define now

Then

This approximation is linear in 𝛿𝑥(𝑡) and 𝛿𝑢(𝑡)

Ø Same reasoning hold for the output transformation 
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Linearized system
Then we have

with

Ø Thus, we can study the stability of the equilibrium by analyzing the
stability of the linearized system using the same tool as for LTI
system.

Ø Indirect Lyapunov method. It also holds for continuous time
system.



Example: water tank
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Example: Linearized system

• This system has two equilibria for u(k)=0

Consider the discrete time of a pendulum

with l=1m, m=1, k=0.5, g=9.81, ∆!= 0.1 𝑠.



64

Example: Linearized system
We can study the stability of these two equilibria, by linearizing about 
such points

Then we can write down matrices A and B, as:

Which should be evaluated in the two equilibria 
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Example: Linearized system
Let’s consider the first equilibrium

Whose eigenvalues are

Since both eigenvalues are such that

Then this equilibrium is asymptotically stable.
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Example: Linearized system
Let’s consider the second equilibrium

Whose eigenvalues are

Since               then this equilibrium is unstable. 
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State-Space Representation

68

SISO à Single Input Single Output

𝒙 𝑡' = 𝒙𝟎

]
𝒙̇ 𝑡 = 𝑓 𝒙 𝒕 , 𝑢 𝑡 )
𝑦 𝑡 = 𝑔 𝒙 𝒕 , 𝑢 𝑡

𝒙 𝑡 ∈ 	ℜ𝒏State Equation
Output Equation

Initial state

𝑦 𝑡 ∈ 	ℜ
scalar

𝑢 𝑡 ∈ 	ℜ
scalar

MIMO à Multi Input Multi Output 𝑦 𝑡 ∈ ℜ𝒑
array

𝑢 𝑡 ∈ ℜ𝒎
array

State variables are internal variables (𝒙(𝒕)) of the system whose knowledge at the time 𝑡$ is the 
minimum amount of information needed to determine the output 𝒚 𝒕  due to the input 𝒖(𝒕), far 
all 𝑡 > 𝑡$

The generic state-space representation of a time-invariant nonlinear dynamical system



State-Space Representation
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When there are no input variables, the system

Is defined as autonomous.
𝒙̇ 𝑡 = 𝑓 𝒙 𝒕

When the function 𝑓 𝒙, 𝒖 	is linear in 𝒙 𝒕 	e 𝒖 𝒕 , the system is linear time-
invariant (LTI):

Con 𝑨 ∈ 	ℜ𝒏,𝒏, 𝑩 ∈ 	ℜ𝒏,𝒎, 𝑪 ∈ 	ℜ𝒑,𝒏 e 𝑫 ∈ 	ℜ𝒑,𝒎.

W
𝑥̇ 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢(𝑡)
𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢(𝑡)



Equilibrium
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If we enter constant inputs 𝑢 𝑡 = 1𝑢	We obtain movements of the state and output that are also 
constant over time.

These movements are called equilibrium states and outputs. Equilibrium states must satisfy 
the equation 𝑥̇ 𝑡 = 0

W
𝒙̇ 𝑡 = 𝒇(𝒙 𝑡 , 𝑢 𝑡 )
𝑦 𝑡 = 𝑔(𝒙 𝑡 , 𝑢 𝑡 )

𝑢 𝑡 = H𝑢	, 𝑡 ≥ 𝑡'

𝒇 :𝒙, :𝒖 = 𝟎

State of Equilibrium

Movement of the states 𝑥 𝑡 = 𝑥̅ constant over time with 

𝑢 𝑡 = 1𝑢

Equilibrium output 

Movement of the output 𝑦 𝑡 = 1𝑦 constant over time with 

𝑢 𝑡 = 1𝑢



Example
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M

m

l

ϑ

x
̇𝑥! 𝑡 = 𝑥" 𝑡

̇𝑥" 𝑡 = −
𝑢 𝑡
𝑙 𝑐𝑜𝑠 𝑥! 𝑡 +

𝑔
𝑙 𝑠𝑖𝑛 𝑥! 𝑡 +

𝑏
𝑚𝑙" 𝑥" 𝑡

𝑦 𝑡 = 𝑥!(𝑡)

𝒇 @𝒙, @𝒖 = 𝟎

0 = 𝑥̅"

0 = −
6𝑢
𝑙
𝑐𝑜𝑠 𝑥̅! +

𝑔
𝑙
𝑠𝑖𝑛 𝑥̅! +

𝑏
𝑚𝑙"

𝑥̅"
6𝑦 = 𝑥̅!

𝑥̅" = 0

0 = −
𝑔
𝑙
𝑠𝑖𝑛 𝑥̅!

6𝑦 = 𝑥̅!

@𝒖 = 𝟎

:𝒙 = 𝑘𝜋
0

Equilibria:

𝒙 𝒕 = 𝜽
𝜽̇



Equilibrium of LTI systems
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Let’s assess the presence of equilibrium in LTI systems

Let's say 𝑥̇ 𝑡 = 0 at 𝑢 𝑡 = 6𝑢

W𝑥̇ 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢(𝑡)
𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢(𝑡)

0 = 𝐴𝑥̅ + 𝐵H𝑢 𝐴𝑥̅ = −𝐵H𝑢

det 𝐴 ≠ 0

det 𝐴 = 0
The system 𝐴𝑥̅ = −𝐵1𝑢 can have
• infinite solutions
• No solution

The equilibria are: 𝐴𝑥̅ = −𝐵1𝑢

𝑥̅ = −𝐴"#𝐵H𝑢



Stability
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An equlibrium 1𝐱 is said to be stable if, for each ϵ > 0 there esists δ > 0	such that for each initial 

state x$	that satisfies:

𝑥$ − 𝑥̅ ≤ 𝛿

It results
𝑥 𝑡 − 𝑥̅ ≤ 𝜖	 t ≥ 0

𝑥̅
𝑥̅ + 𝛿

Perturbed 
Movement 

Nominal
Movement

𝑥̅ + 𝜖

𝑥̅ − 𝜖



Stability
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𝑥̅
𝑥̅ + 𝛿

Perturbed 
Movement

Nominal
Movement

𝑥̅ + 𝜖

𝑥̅ − 𝜖

An equilibrium 1𝐱 It is said to be unstable if it is not stable.

For eachϵ > 0 does not exist δ > 0	such that for each initial state x$	that satisfies:

𝑥$ − 𝑥̅ ≤ 𝛿

It results
𝑥 𝑡 − 𝑥̅ ≤ 𝜖	 t ≥ 0



Stability

75

An equilibrium 1𝐱 is said to be asymptotically stable if, for eachϵ > 0 Exists δ > 0	such that for all 

initial states x$	that satisfy:

𝑥$ − 𝑥̅ ≤ 𝛿

It results
𝑥 𝑡 − 𝑥̅ ≤ 𝜖	 t ≥ 0 𝑒 lim

%→'
𝑥 𝑡 − 𝑥̅ = 0

𝑥̅
𝑥̅ + 𝛿

Perturbed 
Movement

Nominal
Movement

𝑥̅ + 𝜖

𝑥̅ − 𝜖



Stability of LTI systems
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The nominal movement of an LTI system is given by Lagrange's formula:

𝑥 𝑡 = 𝑒#$𝑥$% +8
%

$
𝑒# $&' 𝐵𝑢(𝜏)	𝑑𝜏

Assuming a perturbation of the initial condition 𝑥$% = 𝑥̅ + 𝛿)̅ We get the perturbed 

movement:

>𝑥 𝑡 = 𝑒#$𝑥̅ + 8
%

$
𝑒# $&' 𝐵𝑢(𝜏)	𝑑𝜏 + 𝑒#$𝛿*)	

W
𝑥̇ 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑢(𝑡)
𝑦 𝑡 = 𝐶𝑥 𝑡 + 𝐷𝑢(𝑡)



Stability of LTI systems
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>𝑥 𝑡 = 𝑒#$𝑥̅ + 8
%

$
𝑒# $&' 𝐵𝑢(𝜏)	𝑑𝜏 + 𝑒#$𝛿*)	

The perturbed movement differs from the nominal movement only in that 𝛿𝑥 𝑡 =

𝑒#$𝛿)̅. We can therefore deduce that, for an LTI system: 

• The perturbed movement does not depend on the particular state of equilibrium. We 

can therefore speak of the stability of the system (à global property)

• The difference between the nominal and the perturbed movement depends on the 

values assumed by the matrix A



Stability of LTI systems
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F𝑥 𝑡 − 𝑥̅ = 𝑒IJ𝛿KL	

We can deduce that:

• Asymptotically stable system  lim
2→4

𝑒52 = 0

• Unstable system    𝑒52 diverges with 𝑡 → ∞

• Stable System     𝑒52 bounded ∀𝑡



Stability theorem of LTI systems
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1. A (continous time) LTI system is asymptotically stable if and only if all 

eigenvalues of matrix A have negative real part

𝑅𝑒 𝑠, < 0, ∀𝑖

2. An LTI system is unstable if matrix A has at least one eigenvalue with positive 

real part

∃𝑖∗: 𝑅𝑒 𝑠,∗ > 0

3. An LTI system is stable if matrix A has all eigenvalues with negative real part 

and one null

𝑅𝑒 𝑠, < 0, ∀𝑖

∃! 𝑖∗ ∶ 𝑅𝑒 𝑠,∗ = 0



Area of asymptotic stability
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Re

Im

Region of as. stability
𝑅𝑒 𝑠( < 0

Region of instability
𝑅𝑒 𝑠( > 0

Stability Limit 
𝑅𝑒 𝑠( = 0



Properties of LTI systems
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1. An as. Stable LTI system, if perturbed, tends to return to equilibrium before 
the perturbation.

2. At any constant input H𝑢 is associated one and only one state of equilibrium 
𝑥̅

3. A system as. stable is not affected by the initial conditions (the 
movement of the state depends only on 𝑢(𝑡))

4. With zero input, the movement of the state tends asymptotically to zero.

5. With 𝑢 𝑡 = H𝑢 the output of an as. stable system tends to the stationary 

value H𝑦.

6. If the input is bounded, the output of an as. Stable LTI system will also 
be bounded
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