

UNIVERSITÀ DEGLI STUDI DI BERGAMO

Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione

Lesson 3.

Movements, Equilibria, Stability

CONOTRL AND MODELING OF BIOLOGICAL SYSTEMS

MASTER DEGREE IN MEDICAL ENGINEERING

TEACHER Antonio Ferramosca

PLACE University of Bergamo

Outline

- 1. Movements, equilibrium
- 2. Stability
- 3. LTI systems: movements, equilibrium, stability
- 4. Linearization
- 5. Continuous time systems

Outline

- 1. Movements, equilibrium
- 2. Stability
- 3. LTI systems: movements, equilibrium, stability
- 4. Linearization
- 5. Continuous time systems

State and output movements

 $\begin{array}{rcl} x(t+1) &=& f(x(t), u(t)), & x(0) = x_0 \\ y(t) &=& g(x(t), u(t)) \end{array}$

Given an input function $u(t) = \check{u}(t)$ ($t \ge 0$), and the initial condition x_0 , we can easily compute how state and output evolves throughout the time, for t > 0.

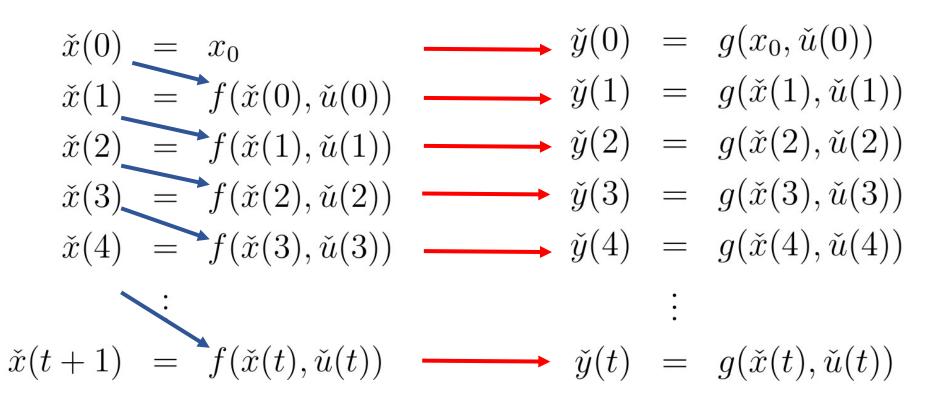
The functions $\check{x}(t)$ (t ≥ 0) and $\check{y}(t)$ (t ≥ 0) are respectively called state **movement** and **output movement**.

 $\check{x}(t), t \ge 0$ is the state movement corresponding to the input $\check{u}(t)$ $\check{y}(t), t \ge 0$ is the output movement corresponding to the input $\check{u}(t)$

Such movements can be computed iteratively.

State and output movements

Let the input function $u(t) = \check{u}(t)$ ($t \ge 0$), be given by the sequence: $\check{u} = \{\check{u}(0), \check{u}(1), \check{u}(2), ..., \check{u}(t), \check{u}(t+1), ...\}$ Then:



Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione

Example 1: water tank $q_{in}(t)$ Inlet flow $x(t+1) = x(t) + \frac{\Delta t}{A}(u(t) - \kappa \sqrt{x(t)})$ h(t) $y(t) = \kappa \sqrt{x(t)}$ Water level ► Let: $A = 1m^2$, $\Delta t = 1s$, $k = 0.3 \frac{m^2}{s}$ $q_{out}(t)$ **Outlet flow** $x(t+1) = x(t) - 0.3\sqrt{x(t) + u(t)}$ $y(t) = 0.3\sqrt{x(t)}$

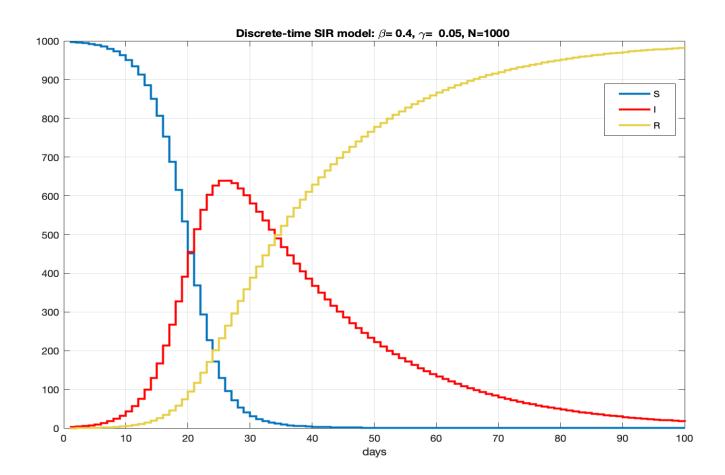
- In order to find state and output movements, we need an initial condition and a control sequence:
 - Initial condition x(0) = 4m
 - Input $\check{u}(t) = 0.5 \ {}^{m^3}/_s$, t ≥ 0

Example 1: water tank

$$\begin{array}{lll} x(t+1) &=& x(t) - 0.3 \sqrt{x(t)} + u(t) \\ y(t) &=& 0.3 \sqrt{x(t)} \end{array}$$

$$q_{in}(t)$$
 Inlet flow $h(t)$ Water level $q_{out}(t)$

Example 2: SIR model



$$S(t+1) = S(t) - \frac{\beta S(t)I(t)}{N}$$

$$I(t+1) = I(t) + \frac{\beta S(t)I(t)}{N} - \gamma I(t)$$

$$R(t+1) = R(t) + \gamma I(t)$$

$$S(0) = 997, I(0) = 3, R(0) = 0$$

$$\beta = 0.4, \gamma = 0.05$$

Iterations by computer simulations

Time step t =1 day

Example 2: SIR model

1		%% SIR MODEL simulation
2		
3	-	S0=997;
4	-	10=3;
5	_	R0=0;
		N=1000;
7		
8		% SIR
9	_	beta=0.4;
10	_	gamma=0.05;
11		gannia 0.00,
12	_	T=100;
13		1 – 100,
14		S=zeros(T,1);
15		I=zeros(T,1);
16	-	R=zeros(T,1);
17		
18		S(1)=S0;
19	-	l(1)=l0;
20	-	R(1)=R0;
21		
22	-	🖵 for k=1:T
23	-	S(k+1)=S(k)-beta*(S(k)*I(k))/N;
24	_	I(k+1)=I(k)+beta*(S(k)*I(k))/N-gamma*I(k);
25	_	R(k+1)=R(k)+gamma*I(k);
26		end

Iterations by Matlab simulations

$$S(t+1) = S(t) - \frac{\beta S(t)I(t)}{N}$$
$$I(t+1) = I(t) + \frac{\beta S(t)I(t)}{N} - \gamma I(t)$$
$$R(t+1) = R(t) + \gamma I(t)$$

$$S(0) = 997, I(0) = 3, R(0) = 0$$

$$\beta=0.4,\,\gamma=0.05$$

Equilibrium

$$\begin{aligned} x(t+1) &= f(x(t), u(t)), \quad x(0) = x_0 \\ y(t) &= g(x(t), u(t)) \end{aligned}$$

Given a **constant** input function $u(t) = \overline{u}$ ($t \ge 0$), the state movements will converge to an **equilibrium state and output**.

This implies that x(t + 1) = x(t).

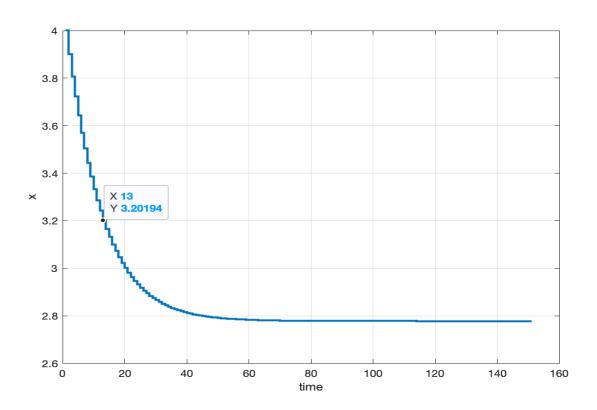
This means that functions x(t) (t ≥ 0) and y(t) (t ≥ 0) converge to a constant value \overline{x} and \overline{y} which is solution of the following equation

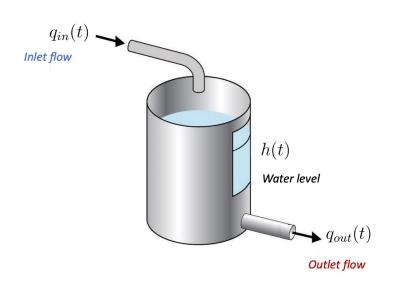
$$ar{x} = f(ar{x}, ar{u})$$

 $ar{y} = g(ar{x}, ar{u})$

Example 1: water tank

$$\begin{array}{rcl} x(t+1) &=& x(t) - 0.3\sqrt{x(t)} + u(t) \\ y(t) &=& 0.3\sqrt{x(t)} \end{array}$$





- In order to find the equilibrium state and output, we run a simulation with:
 - Initial condition x(0) = 4m
 - Input $u = 0.5 \ m^3/_s$, k ≥ 0
- After 80 steps, the state converges to an equilibrium.

How to find the equilibrium?

Are simulations the best way to find an equilibrium? Nop: we can also find the equilibrium analitically by solving

$$\bar{x} = \bar{x} - 0.3\sqrt{\bar{x}} + \bar{u}$$

$$\bar{y} = 0.3\sqrt{\bar{x}}$$

$$\bar{x} = \left(\frac{\bar{u}}{0.3}\right)^2$$

$$\bar{y} = \bar{u}$$

• Taking into account that $\overline{u} = 0.5 \ {m^3/_s}$, then

mazione e della Produzione

$$\bar{x} = 2.7778$$

 $\bar{y} = 0.5$

At the equilibrium the outlet flow is equal to the inlet flow

$$\overrightarrow{x} = f(\overline{x}, \overline{u})$$
$$\overrightarrow{y} = g(\overline{x}, \overline{u})$$

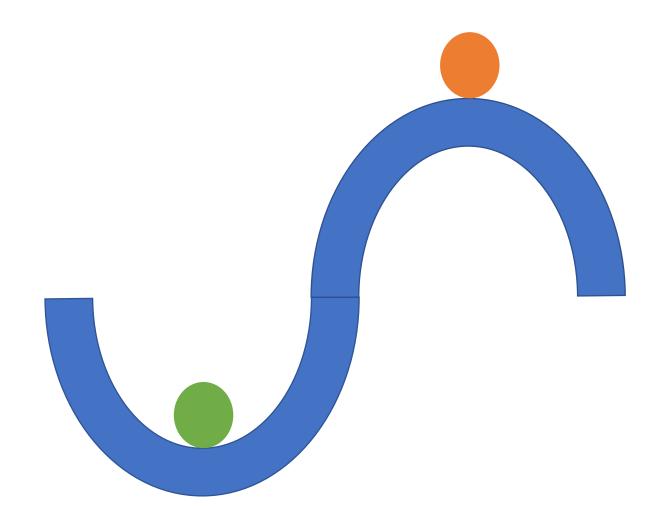
Outline

1. Movements, equilibrium

2. Stability

- 3. LTI systems: movements, equilibrium, stability
- 4. Linearization

A | Dipartimento
 I di Ingegneria Gestionale,
 D dell'Informazione e della Produzione

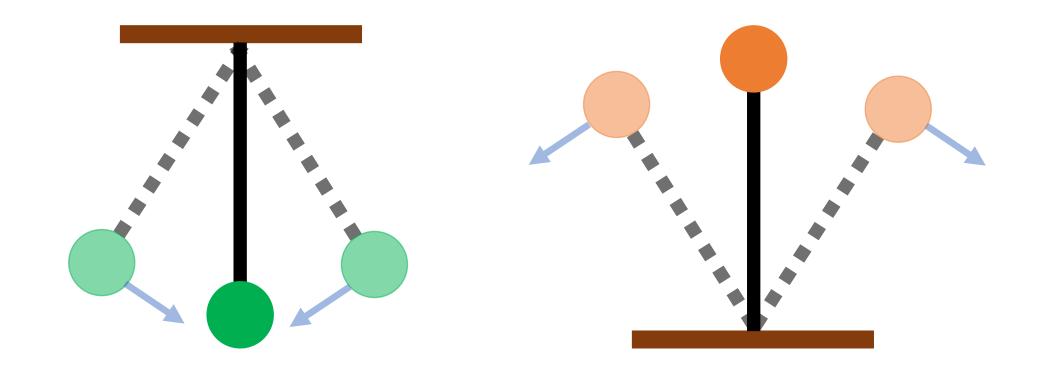


Both balls are in an equilibrium.

The green ball is in a stable equilibrium.

The orange ball is in a unstable equilibrium

Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione



The green ball is in a stable equilibrium. The orange ball is in an unstable equilibrium.

Dipartimento
 di Ingegneria Gestionale,
 dell'Informazione e della Produzione

If an equilibrium is stable then if there is a small perturbation on the initial condition then the system tends to reach the equilibrium.

- Stability is a property of the equilibrium point and not of the system.
- The same system can have stable equilibrium and unstable ones (see the previous slide).

Stability is a local property of the equilibrium and it works for small perturbations.

| Dipartimento | di Ingegneria Gestionale, | dell'Informazione e della Produzione

Stability: formal definition

Stability: The equilibrium point *x=0* is **locally stable** if

 $\forall \epsilon \geq 0 \, \exists \, \delta \geq 0 \, \text{ s. t. } \| x(0) \| \leq \delta \Rightarrow \| x(t) \| \leq \epsilon, \, \forall t \geq 0$

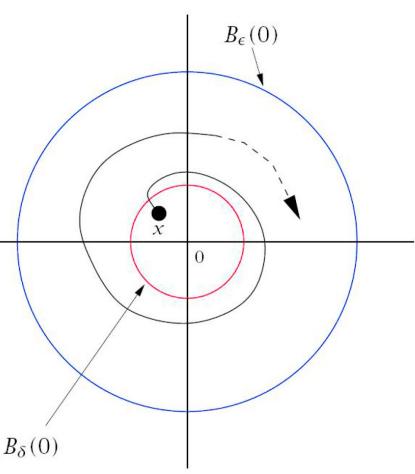
The equilibrium point x=0 is unstable if it is not stable.

Attractivity: The equilibrium point *x=0* is **attractive** if:

$$\lim_{t \to \infty} x(t) = 0$$

Asymptotic Stability: The equilibrium point *x=0* is **asymptotically stable** if it is

Locally Stable + Attractive



Check if an equilibrium is stable

In general, not an easy problem to solve.

□For linear time-invariant (LTI) system, the solution is quite simple.

 \succ You just need to check the eigenvalues of matrix A.

□For a nonlinear time-invariant system, one can **linearize** it about the equilibrium point and check stability of the equilibrium using the method for LTI systems.

Outline

- 1. Movements, equilibrium
- 2. Stability

3. LTI systems: movements, equilibrium, stability

- 4. Linearization
- 5. Continuous time systems

LTI Systems

LTI stands for Linear Time-Invariant Systems.

>They are a very specific class of system.

They are very simple to study and there is a lot of theory about them.

In a first approximation, they can explain a large number of phenomena/processes.

LTI Systems

$$x(t+1) = f(x(t), u(t)), \quad x(0) = x_0$$

 $y(t) = g(x(t), u(t))$ SISO

In LTI systems, functions f(x,u) and g(x,u) are linear functions of the form

$$\begin{aligned} x_1(t+1) &= a_{11}x_1(t) + a_{12}x_2(t) + \dots + a_{1n}x_n(t) + b_1u(t) \\ x_2(t+1) &= a_{21}x_1(t) + a_{22}x_2(t) + \dots + a_{2n}x_n(t) + b_2u(t) \\ &\vdots \\ x_n(t+1) &= a_{n1}x_1(t) + a_{n2}x_2(t) + \dots + a_{nn}x_n(t) + b_nu(t) \\ y(t) &= c_1x_1(t) + c_2x_2(t) + \dots + c_nx_n(t) + du(t) \end{aligned}$$

LTI Systems

The LTI systems can be rewritten in compact form

$$\begin{aligned} x(t+1) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) + Du(t) \end{aligned}$$

where

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \ddots & & \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \in \mathbb{R}^{n \times n}, \qquad B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} \in \mathbb{R}^{n \times 1}$$
$$C = \begin{bmatrix} c_1 & c_2 & \dots & c_n \end{bmatrix} \in \mathbb{R}^{1 \times n}, \qquad D = d \in \mathbb{R}$$

Example

• The LTI systems

$$\begin{aligned} x_1(t+1) &= x_1(t) + x_2(t) + 0.5u(t) \\ x_2(t+1) &= x_2(t) + u(t) \\ y(t) &= x_1(t) \end{aligned}$$

can be rewritten in compact form with

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \in \mathbb{R}^{2 \times 2}, \qquad B = \begin{bmatrix} 0.5 \\ 1 \end{bmatrix} \in \mathbb{R}^{2 \times 1}$$
$$C = \begin{bmatrix} 1 & 0 \end{bmatrix} \in \mathbb{R}^{1 \times 2}, \qquad D = 0 \in \mathbb{R}$$

Movements

The movements of a discrete-time LTI systems can be computed iteratively.

Given $\boldsymbol{u}(t) \ \forall t \geq 0 \text{ and } x(0)$

$$\begin{aligned} x(1) &= Ax(0) + Bu(0) \\ x(2) &= Ax(1) + Bu(1) \\ &= A^2x(0) + ABu(0) + Bu(1) \\ x(3) &= Ax(2) + Bu(2) \\ &= A^3x(0) + A^2Bu(0) + ABu(1) + Bu(2) \\ &\vdots \\ x(t) &= A^tx(0) + \sum_{j=0}^{t-1} A^jBu(t-j-1) \\ \end{aligned}$$

Movements

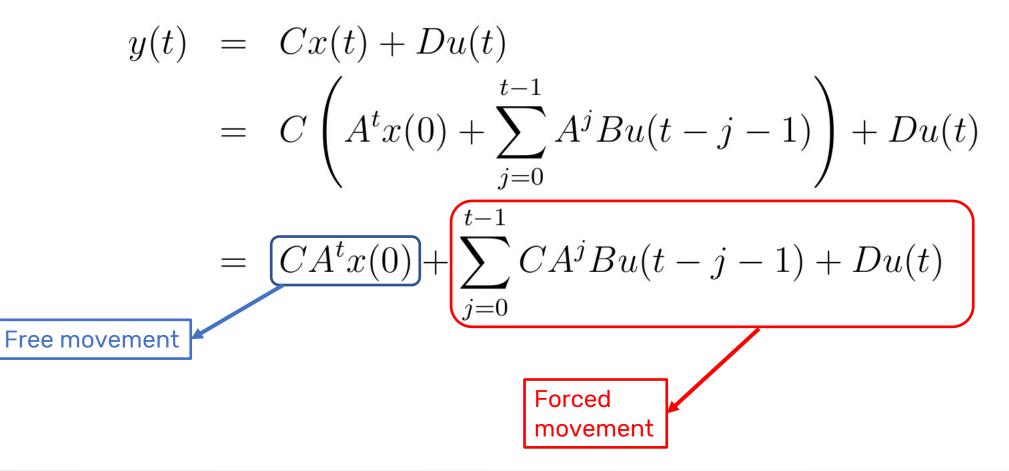
$$x(t) = A^{t}x(0) + \sum_{j=0}^{t-1} A^{j}Bu(t-j-1) \xrightarrow{\text{Forced movement}} Free movement$$

> The **free movement** only depends on the initial condition

The forced movement is forced by the input applied to the system.

Output Movement

It is easy to see that



Superposition principle

Since LTI systems are linear systems, they enjoy the **superposition principle.**

 \succ Given two initial condition $x_1(0)$ and $x_2(0)$, and given

$$x(0) = \alpha x_1(0) + \beta x_2(0)$$

then

$$\begin{aligned} x(t) &= A^{t}x(0) \\ &= A^{t}(\alpha x_{1}(0) + \beta x_{2}(0)) \\ &= \alpha A^{t}x_{1}(0) + \beta A^{t}x_{2}(0) \\ &= \alpha x_{1}(t) + \beta x_{2}(t) \end{aligned}$$

Free movement	
u(0) = 0	

Superposition principle

• Similarly, given two control sequences

$$\mathbf{u}_1 = \{u_1(0), u_1(0), \dots, u_1(k)\}$$
$$\mathbf{u}_2 = \{u_2(0), u_2(0), \dots, u_2(k)\}$$

and given $\, {f u} = lpha {f u}_1 + eta {f u}_2 \,$, then

$$\begin{aligned} x(t) &= \sum_{j=0}^{t-1} A^j B u(t-j-1)) \\ &= \sum_{j=0}^{t-1} A^j B \left(\alpha u_1(t-j-1) + \beta u_2(t-j-1) \right) \\ &= \sum_{j=0}^{t-1} A^j B \alpha u_1(t-j-1) + \sum_{j=0}^{t-1} A^j B \beta u_2(t-j-1) \\ &= \alpha x_1(t) + \beta x_2(t) \end{aligned}$$

Forced movement
$$x(0) = 0$$

Superposition principle

• Combining free and forced movement:

$$x(t) = \alpha x_1(t) + \beta x_2(t)$$

= $\alpha A^t x_1(0) + \alpha \sum_{j=0}^{t-1} A^j B u_1(t-j-1)$
 $+ \beta A^t x_2(0) + \beta \sum_{j=0}^{t-1} A^j B u_2(t-j-1)$

Same reasoning holds for the output movements

Equilibrium

Consider the LTI system:

$$\begin{array}{rcl} x(t+1) &=& Ax(t) + Bu(t) \\ y(t) &=& Cx(t) + Du(t) \end{array}$$

Equilibrium: constant solution to the difference equation.

$$\bar{x} = A\bar{x} + B\bar{u} \bar{y} = C\bar{x} + D\bar{u}$$

The equilibrium is given by the solution to the previous linear system (first eq. actually).

Equilibrium

Let's do the calculations:

 $\bar{x} = A\bar{x} + B\bar{u}$ $\bar{x} - A\bar{x} = B\bar{u}$ $(I_n - A)\bar{x} = B\bar{u}$ If $det(I_n - A) = 0$, then If det $(I_n - A) \neq 0$, then $\bar{x} = (I_n - A)^{-1} B \bar{u}$ The system has infinite solutions or no solution. The equilibrium is univocally defined by the control input: > One equilibrium for each

Static gain

Consider the case $\det(I_n - A) \neq 0$

State equilibrium
$$\bar{x} = (I_n - A)^{-1} B \bar{u}$$

>Output equilibrium: $\bar{y} = C\bar{x} + D\bar{u}$ = $C(L - A)^{-1}B\bar{u} + D\bar{u}$

$$= C(I_n - A) \quad Du + Du$$
$$= \left(C(I_n - A)^{-1}B + D \right) \overline{u}$$

• The term $\mu = (C(I_n - A)^{-1}B + D)$

is called *static gain* of the system.

Remarks

>In an LTI system for each value of the input \overline{u} there is a **unique** equilibrium (minor some degenerate cases).

$$\bar{x} = (I_n - A)^{-1} B \bar{u}$$

➤The static gain allows one to determine how the output changes due to an incremental change in the input, once the system has reached the steady state

$$\mu = \left(C(I_n - A)^{-1}B + D \right)$$

$$\Delta \overline{y} = \mu \cdot \Delta \overline{u}$$

Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione

Example

$$\begin{cases} x_1(t+1) = 0.5 \cdot x_1(t) + x_2(t) + 3 \cdot u(t) \\ x_2(t+1) = 0.1 \cdot x_2(t) \\ y(t) = x_1(t) + 3 \cdot x_2(t) + 5 \cdot u(t) \end{cases} \qquad A = \begin{bmatrix} 0.5 & 1 \\ 0 & 0.1 \end{bmatrix} \qquad B = \begin{bmatrix} 3 \\ 0 \end{bmatrix} \\ D = 5$$

• Check the determinant:

$$\det(I_n - \mathbf{A}) = \det\left(I_n - \begin{bmatrix} 0.5 & 1\\ 0 & 0.1 \end{bmatrix}\right) = \det\left(\begin{bmatrix} 0.5 & -1\\ 0 & 0.9 \end{bmatrix}\right) = 0.45 \neq 0$$

• Compute the static gain:

$$u = C \cdot (I_n - A)^{-1} \cdot B + D = \begin{bmatrix} 1 & 3 \end{bmatrix} \cdot \begin{bmatrix} 0.5 & -1 \\ 0 & 0.9 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 3 \\ 0 \end{bmatrix} + 5 = 11$$

• Compute the equilibrium with $\bar{u} = 2$ (assuming null initial conditions):

$$\overline{\mathbf{x}} = (I_n - \underline{A})^{-1} \cdot \underline{B} \cdot \overline{u} = \begin{bmatrix} 0.5 & -1 \\ 0 & 0.9 \end{bmatrix}^{-1} \cdot \begin{bmatrix} 3 \\ 0 \end{bmatrix} \cdot 2 = \begin{bmatrix} 12 \\ 0 \end{bmatrix}$$
$$\overline{y} = \mu \cdot \overline{u} = 11 \cdot 2 = 22$$

Example

Consider the LTI systems

$$\begin{array}{rcl} x_1(t+1) &=& x_1(t) + x_2(t) + 0.5u(t) \\ x_2(t+1) &=& x_2(t) + u(t) \\ y(t) &=& x_1(t) \end{array} \quad A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \in \mathbb{R}^{2 \times 2}, \qquad B = \begin{bmatrix} 0.5 \\ 1 \end{bmatrix} \in \mathbb{R}^{2 \times 1}$$

Check the determinant:

$$\det(I_n - \mathbf{A}) = \det\left(I_n - \begin{bmatrix}1 & 1\\0 & 1\end{bmatrix}\right) = \det\left(\begin{bmatrix}0 & -1\\0 & 0\end{bmatrix}\right) = 0$$

The system does not have a unique solution.

Consider the LTI system

$$\begin{aligned} x(k+1) &= Ax(k) + Bu(k) \\ y(k) &= Cx(k) + Du(k) \end{aligned}$$

and the equilibrium

$$\bar{x} = (I_n - A)^{-1} B \bar{u}$$
$$\bar{y} = \mu \bar{u}$$

➢Is it stable??? Let's check the movements

Nominal movement

Perturbated movement

$$\begin{aligned} x(t+1) &= Ax(t) + Bu(t) \\ y(t) &= Cx(t) + Du(t) \\ x(0) &= \overline{x} + \delta x_0 \end{aligned}$$

$$x(t) = A^{t}(\bar{x} + \delta x_{0}) + \sum_{j=0}^{t-1} A^{j} B \bar{u}$$
$$= A^{t} \bar{x} + \sum_{j=0}^{t-1} A^{j} B \bar{u} + A^{t} \delta x_{0}$$
$$= \bar{x} + A^{t} \delta x_{0}$$

$$x(t) = \bar{x} + A^t \delta x_0 \qquad \qquad \delta x(t) = A^t \delta x_0$$

The perturbation $\delta x(t)$ corresponds to the free movement with initial condition $x(0) = \delta x_0$.

The perturbation $\delta x(t)$ does not depend on the specific equilibrium.

The entity of the perturbation depends only on the initial perturbation and on the matrix A.

$$x(t) = \bar{x} + A^t \delta x_0 \qquad \qquad \delta x(t) = A^t \delta x_0$$

Since the stability depends only on the behavior of the perturbation $\delta x(t)$ and since the perturbation does not depend on the single equilibrium,

> The stability is a property of the **entire system.**

The equilibriums of an LTI system are all stable or all unstable.
 We can talk of stable, asymptotically stable or unstable systems.

Classification

Based on the previous slide, we have 3 possibilities:

A LTI system is asymptotically stable if

 $\lim_{t \to \infty} A^t \delta x_0 = 0$

- A LTI system is **stable** if $A^t \delta x_0$ is **bounded**
- A LTI system is **unstable** if

$$\lim_{t \to \infty} A^t \delta x_0 = \pm \infty$$

Example

$$\begin{aligned} x(t+1) &= 0.1x(t) + 0.2u(t) \\ y(t) &= 3x(t) + 2u(t) \end{aligned}$$
$$\lim_{t \to \infty} A^t \delta x_0 &= \lim_{t \to \infty} (0.1)^t \delta x_0 = 0 \end{aligned}$$

Asymptotically stable

$$\begin{aligned} x(t+1) &= -0.3x(t) + 0.2u(t) \\ y(t) &= 3x(t) + 2u(t) \end{aligned}$$

2.

1.

$$\lim_{t \to \infty} A^t \delta x_0 = \lim_{t \to \infty} (-0.3)^t \delta x_0 = 0$$

Asymptotically stable

Example

$$\begin{aligned} x(t+1) &= 2x(t) + 0.2u(t) \\ y(t) &= 3x(t) + 2u(t) \\ \lim_{t \to \infty} A^t \delta x_0 &= \lim_{t \to \infty} 2^t \delta x_0 = \infty \end{aligned}$$

$$\begin{aligned} x(t+1) &= x(t) + u(t) \\ y(t) &= x(t) \end{aligned}$$

$$\begin{aligned} \lim_{t \to \infty} A^t \delta x_0 &= \lim_{t \to \infty} 1^t \delta x_0 = \delta x_0 \\ \lim_{t \to \infty} A^t \delta x_0 &= \lim_{t \to \infty} 1^t \delta x_0 = \delta x_0 \end{aligned}$$
Bounded

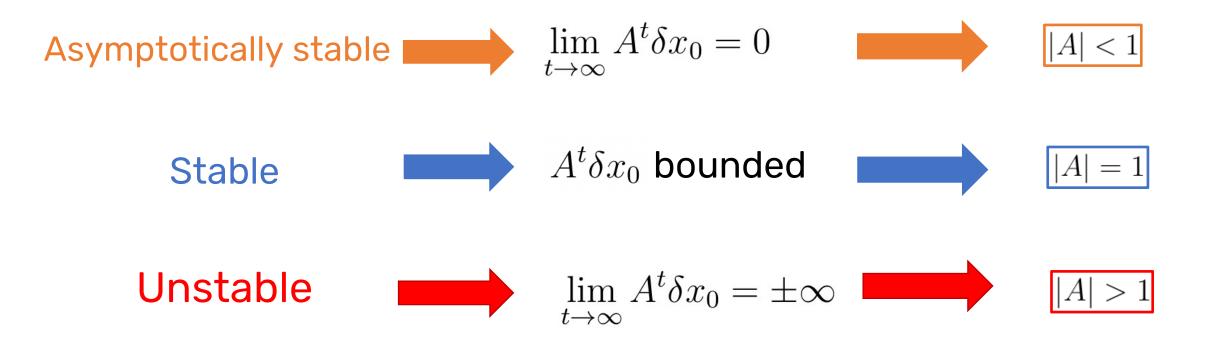
3.

4.

ble

Summing up...

Given a first order (n=1) LTI system



Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione

1. In an asymptotically stable LTI system **the free** movement tends to zero.

$$x_{free}(t) = \lim_{t \to \infty} A^t x_0 = 0$$

2. In an asymptotically stable LTI system the asymptotic movement depends only on the input

$$\lim_{t \to \infty} x(t) = \lim_{t \to \infty} \left(A^t x_0 + \sum_{j=0}^{t-1} A^j B \bar{u} \right)$$
Goes to zero

3. An asymptotically stable LTI system **tends to reach the equilibrium for every initial condition**.

Consider the equilibrium (\bar{x}, \bar{u}) , then

$$\lim_{t \to \infty} x(t) = \lim_{t \to \infty} \left(A^t x_0 + \sum_{j=0}^{t-1} A^j B \bar{u} \right)$$
$$= \lim_{t \to \infty} \left(A^t (x_0 + \bar{x} - \bar{x}) + \sum_{j=0}^{t-1} A^j B \bar{u} \right)$$
Solves to zero =
$$\lim_{t \to \infty} A^t (x_0 - \bar{x}) + \lim_{t \to \infty} \left(A^t \bar{x} + \sum_{j=0}^{t-1} A^j B \bar{u} \right)$$
$$= \bar{x}$$

4. In an asymptotically stable LTI system there is **one** and only one equilibrium for each $u(k) = \overline{u}$

Consider two different equilibrium states and their movements

$$x(0) = \bar{x}_1 \longrightarrow x_1(t) = A^t \bar{x}_1 + \sum_{j=0}^{t-1} A^j B \bar{u}$$
$$x(0) = \bar{x}_2 \longrightarrow x_2(t) = A^t \bar{x}_2 + \sum_{j=0}^{t-1} A^j B \bar{u}$$

Applying property 3, these movements necessarily converge to the same equilibrium (since the equilibrium input is the same).

5. In an asymptotically stable LTI system **if the input is constant than the output tends to a final value**

By applying Property 3 the system converges to an equilibrium, by property 1 the free movements is constant, then

$$\bar{x} = (I_n - A)^{-1} B \bar{u}$$

 $\bar{y} = \mu \bar{u}$
 $\mu = (C(I_n - A)^{-1} B + D)$

6. In an asymptotically stable LTI system **if the input is bounded the output is also bounded**

$$|u(t)| \le \alpha, t \ge 0 \quad |y(t)| \le \beta, t \ge 0$$

di Ingegneria Gestionale, di Ingegneria Gestionale, dell'Informazione e della Produzione

Stability when $n \ge 1$

In this case we look at the *eigenvalues* of the matrix A.

Given a matrix $A \in \mathbb{R}^{n \times n}$ the eigenvalue $\lambda \in \mathbb{C}$ and the eigenvector $v \in \mathbb{C}^{n \times 1}$ are the value and the vector such that:

 $A \cdot \boldsymbol{\nu} = \lambda \cdot \boldsymbol{\nu}$

- There are always *n* eigenvalues and eigenvectors
- If there is a complex eigenvalue there is always its conjugate (complex eigenvalues come in couple).
- The eigenvalues are the root of the characteristic polynomial: $\phi(\lambda) = \det(A - \lambda \cdot I_n)$

Classification

Recalling the stability definitions:

• A LTI system is asymptotically stable if $\lim_{t \to \infty} A^t \delta x_0 = 0$

• A LTI system is **stable** if $A^t \delta x_0$ is **bounded**

• A LTI system is **unstable** if $\lim_{t \to \infty} A^t \delta x_0 = \pm \infty$

Then...

Asymptotic stability vs Instability

Theorem 1

An LTI system is **asymptotically stable** if and only if all the eigenvalues λ_i of the matrix A have norm strictly smaller than one:

$$\forall i, |\lambda_i| < 1$$
 Asymptotically stable

Theorem 2

An LTI system is **unstable** if there is **at least one** eigenvalues λ_i of the matrix A with norm strictly greater than one:

Unstable

 $\exists i \ s. t \ |\lambda_i| > 1$

Simple stability

Theorem 3

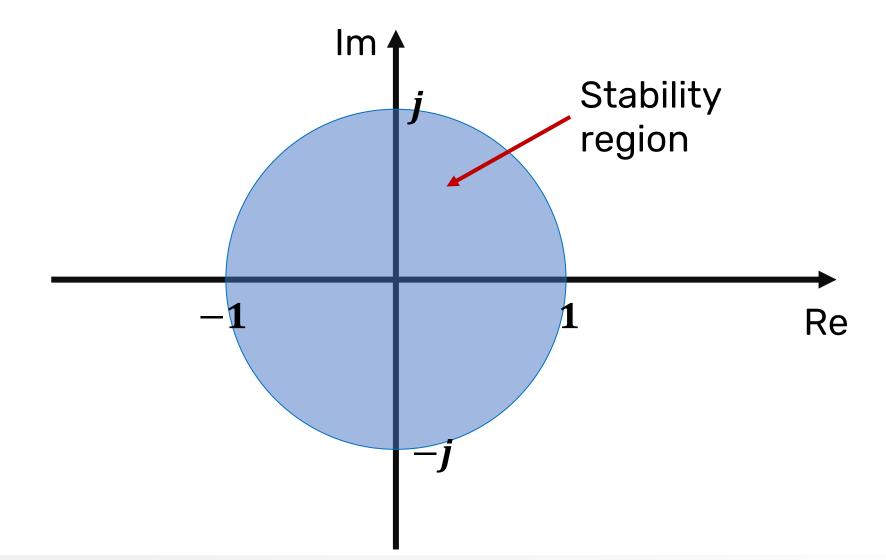
An LTI system is **simply stable** if all the eigenvalues λ_i of the matrix *A* have norm smaller than one and there is **one and only one** eigenvalue with norm equal to one (or a couple of complex eigenvalues):

$$\forall i, |\lambda_i| \le 1 \exists ! i s. t. |\lambda_i| = 1$$
 Simply stable

Remark

- 1. A couple of complex eigenvalues counts as one eigenvalue. Therefore, if all the eigenvalues have norm smaller than one except for a couple of complex eigenvalues with norm equal to one the system is simply stable.
- 2. If there are more than one eigenvalues with norm equals to one the system can be unstable or simply stable, more analysis is needed.

Stability Region



| Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione

Example

$$A = \begin{bmatrix} 0.1 & 1 \\ 0 & -0.2 \end{bmatrix} \qquad \stackrel{\phi(\lambda)}{\longrightarrow} \qquad = \det \begin{bmatrix} 0.1 - \lambda & 1 \\ 0 & -0.2 - \lambda \end{bmatrix} = (0.1 - \lambda)(-0.2 - \lambda)$$

$$\begin{array}{rcl} \lambda_1 &=& 0.1 \\ \lambda_2 &=& -0.2 \end{array}$$

asymptotically stable

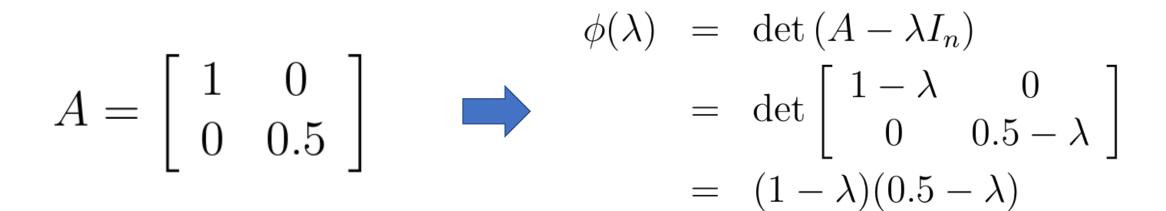
Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione

$$A = \begin{bmatrix} 1.2 & 0 \\ 1 & 0.9 \end{bmatrix} \longrightarrow \phi(\lambda) = \det \begin{pmatrix} A - \lambda I_n \end{pmatrix}$$
$$= \det \begin{bmatrix} 1.2 - \lambda & 0 \\ 1 & 0.9 - \lambda \end{bmatrix}$$
$$= (1.2 - \lambda)(0.9 - \lambda)$$

$$\begin{array}{rcl} \lambda_1 &=& 1.2\\ \lambda_2 &=& 0.9 \end{array}$$

unstable

di Ingegneria Gestionale, DI BERGAMO dell'Informazione e della Produzione



$$\begin{array}{rcl} \lambda_1 &=& 1\\ \lambda_2 &=& 0.5 \end{array}$$

Simply stable

Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione

Example

Consider the following matrix A of a LTI system

$$A = \begin{bmatrix} 1 - \alpha & \beta \\ 0 & 0.1 \end{bmatrix}$$

Determine the values of α and β that make the system stable. The eigenvalues

are:
$$\begin{cases} \lambda_1 = 1 - \alpha \\ \lambda_2 = 0.1 \end{cases}$$

Therefore, the system is asymptotically stable if and only if:

$$|1 - \alpha| < 1 \Rightarrow \begin{cases} 1 - \alpha < 1 \Rightarrow \alpha > 0\\ 1 - \alpha > -1 \Rightarrow \alpha < 2 \end{cases} \Rightarrow 0 < \alpha < 2$$

Furthermore, the system is simply stable if:

$$|1 - \alpha| = 1 \Rightarrow \begin{cases} 1 - \alpha = 1 \Rightarrow \alpha = 0\\ 1 - \alpha = -1 \Rightarrow \alpha = 2 \end{cases} \Rightarrow \alpha = 0 \text{ or } \alpha = 2$$

Outline

- 1. Movements, equilibrium
- 2. Stability
- 3. LTI systems: movements, equilibrium, stability

4. Linearization

5. Continuous time systems

What about nonlinear systems?

- We cannot talk of stability of a nonlinear systems.
- Recall that stability is a local property, that holds in a neighborhood of an equilibrium point.
- For nonlinear systems, we want to check the stability property of the equilibrium (not the entire system).
- How to do that? We can linearize a system in a certain equilibrium and then study the stability of the obtained linearized system using the same tool as for LTI systems.

Linearization

Take a nonlinear model.

$$\begin{aligned} x(t+1) &= f(x(t), u(t)), \quad x(0) = x_0 \\ y(t) &= g(x(t), u(t)) \end{aligned}$$

Let's say (\bar{x}, \bar{u}) is an equilibrium, such that $\bar{x} = f(\bar{x}, \bar{u})$

Consider the **Taylor expansion** of f(x, u) around such equilibrium.

$$f(x(t), u(t)) = \left. f(\bar{x}, \bar{u}) + \frac{\partial f(x, u)}{\partial x} \right|_{(\bar{x}, \bar{u})} (x(t) - \bar{x}) + \frac{\partial f(x, u)}{\partial u} \Big|_{(\bar{x}, \bar{u})} (u(t) - \bar{u})$$

$$x(t+1) \qquad \bar{x}$$

Linearization

Define now $\delta x(t) = (x(t) - \bar{x}), \quad \delta u(t) = (u(t) - \bar{u})$

Then

$$\delta x(t+1) = \frac{\partial f(x,u)}{\partial x} \Big|_{(\bar{x},\bar{u})} \delta x(t) + \frac{\partial f(x,u)}{\partial u} \Big|_{(\bar{x},\bar{u})} \delta u(t)$$

$$(x(t+1) - \bar{x})$$

This approximation is linear in $\delta x(t)$ and $\delta u(t)$

Same reasoning hold for the output transformation

Linearized system

Then we have

$$\delta x(t+1) = A\delta x(t) + B\delta u(t)$$

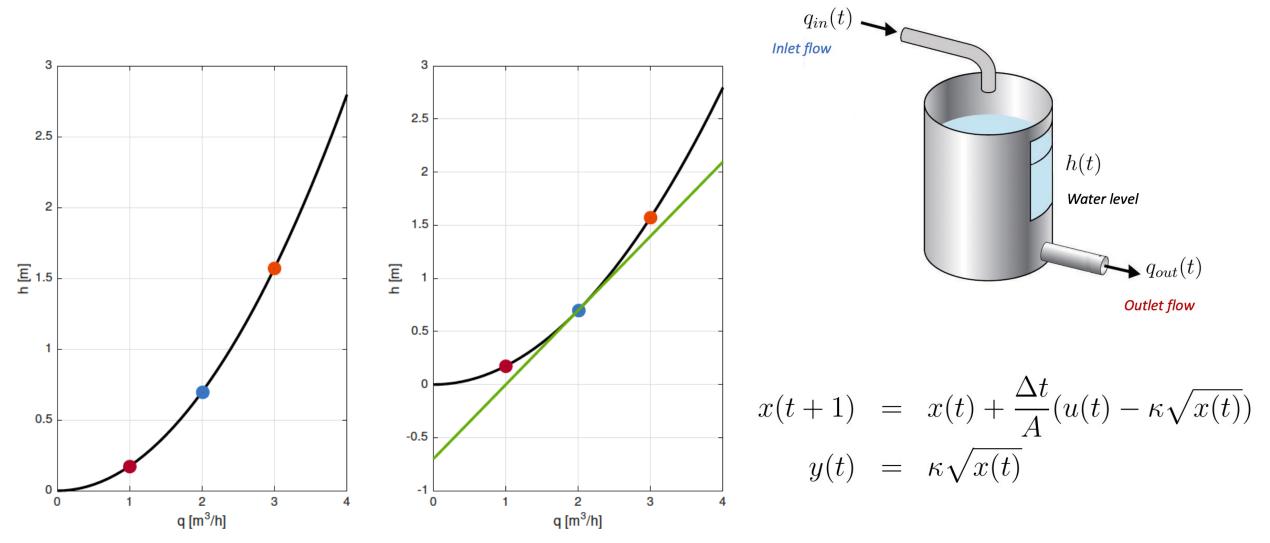
$$\delta y(t) = C\delta x(t) + D\delta u(t)$$

with

$$A = \frac{\partial f(x, u)}{\partial x} \Big|_{(\bar{x}, \bar{u})} B = \frac{\partial f(x, u)}{\partial u} \Big|_{(\bar{x}, \bar{u})} C = \frac{\partial g(x, u)}{\partial x} \Big|_{(\bar{x}, \bar{u})} D = \frac{\partial g(x, u)}{\partial u} \Big|_{(\bar{x}, \bar{u})}$$

- Thus, we can study the stability of the equilibrium by analyzing the stability of the linearized system using the same tool as for LTI system.
- Indirect Lyapunov method. It also holds for continuous time system.

Example: water tank



Consider the discrete time of a pendulum

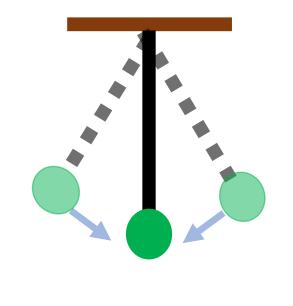
$$x_1(k+1) = x_1(k+1) + \Delta_t x_2(k),$$

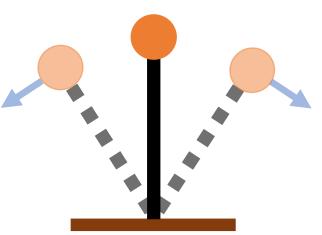
$$x_2(k+1) = x_2(k) + \Delta_t \left(-\frac{g}{l}\sin(x_1(k)) - \frac{k}{m}x_2(k) + \frac{1}{ml^2}u(k)\right)$$

with I=1m, m=1, k=0.5, g=9.81, $\Delta_t = 0.1 s$.

• This system has two equilibria for u(k)=0

$$\bar{x}_a = (0,0)$$
$$\bar{x}_b = (\pi,0)$$





We can study the stability of these two equilibria, by linearizing about such points

 $\delta x_1(k+1) = \delta x_1(k) + 0.01 \delta x_2(k),$ $\delta x_2(k+1) = -0.01g \cos(\bar{x}_1) \delta x_1(k) + (1 - 0.01k) \delta x_2(k) + 0.01 \delta u(k)$

Then we can write down matrices A and B, as:

$$A = \begin{bmatrix} 1 & 0.01 \\ -0.0981\cos(\bar{x}_1) & (1 - 0.005) \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 0.01 \end{bmatrix}$$

Which should be evaluated in the two equilibria

$$\bar{x}_a = (0,0)$$
$$\bar{x}_b = (\pi,0)$$

Let's consider the first equilibrium

$$\bar{x}_a = (0,0), \quad A = \begin{bmatrix} 1 & 0.01 \\ -0.0981 & 0.995 \end{bmatrix}$$

Whose eigenvalues are

$$\lambda_1 = 0.9975 + j0.0312$$

 $\lambda_2 = 0.9975 + j0.0312$

Since both eigenvalues are such that

 $|\lambda_i| = 0.9980 < 1$

Then this equilibrium is **asymptotically stable**.

Let's consider the second equilibrium

$$\bar{x}_b = (\pi, 0), \quad A = \begin{bmatrix} 1 & 0.01 \\ 0.0981 & 0.995 \end{bmatrix}$$

Whose eigenvalues are

$$\lambda_1 = 1.0289$$
$$\lambda_2 = 0.9661$$

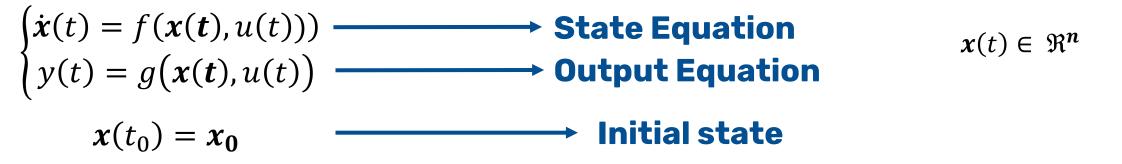
Since $|\lambda_1| > 1$ then this equilibrium is **unstable**.

Outline

- 1. Movements, equilibrium
- 2. Stability
- 3. LTI systems: movements, equilibrium, stability
- 4. Linearization
- 5. Continuous time systems

State-Space Representation

The generic state-space representation of a time-invariant nonlinear dynamical system



State variables are internal variables (x(t)) of the system whose knowledge at the time t_0 is the minimum amount of information needed to determine the output y(t) due to the **input** u(t), far all $t > t_0$

SISO \rightarrow Single Input Single Output	$u(t) \in \Re$ scalar	$y(t) \in \Re$ scalar
MIMO \rightarrow Multi Input Multi Output	$u(t) \in \Re^{m}$ array	$y(t) \in \Re^p$ array

State-Space Representation

When there are no input variables, the system

 $\dot{\boldsymbol{x}}(t) = f\big(\boldsymbol{x}(t)\big)$

Is defined as autonomous.

When the function f(x, u) is linear in $x(t) \in u(t)$, the system is **linear time**invariant (LTI):

 $\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$

Con $A \in \mathbb{R}^{n,n}$, $B \in \mathbb{R}^{n,m}$, $C \in \mathbb{R}^{p,n}$ e $D \in \mathbb{R}^{p,m}$.

Equilibrium

If we enter constant inputs $u(t) = \overline{u}$ We obtain movements of the state and output that are also constant over time.

These movements are called **equilibrium states and outputs**. Equilibrium states must satisfy the equation $\dot{x}(t) = 0$

 $\begin{cases} \dot{\boldsymbol{x}}(t) = \boldsymbol{f}(\boldsymbol{x}(t), \boldsymbol{u}(t)) \\ \boldsymbol{y}(t) = \boldsymbol{g}(\boldsymbol{x}(t), \boldsymbol{u}(t)) \end{cases}$ $\boldsymbol{u}(t) = \boldsymbol{\bar{u}}, t \ge t_0$ $\boldsymbol{f}(\boldsymbol{\bar{x}}, \boldsymbol{\bar{u}}) = \boldsymbol{0}$

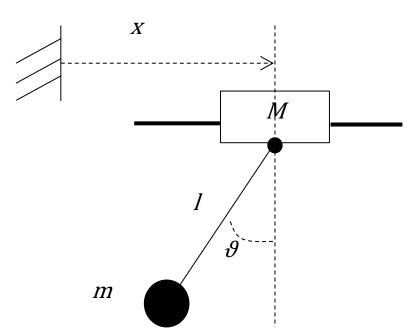
State of Equilibrium

Movement of the states $x(t) = \bar{x}$ constant over time with $u(t) = \bar{u}$

Equilibrium output

Movement of the output $y(t) = \overline{y}$ constant over time with $u(t) = \overline{u}$

Example



$$\begin{cases} \dot{x_1}(t) = x_2(t) \\ \dot{x_2}(t) = -\left(\frac{u(t)}{l}\cos x_1(t) + \frac{g}{l}\sin x_1(t) + \frac{b}{ml^2}x_2(t)\right) \\ y(t) = x_1(t) \end{cases}$$

$$x(t) = \begin{bmatrix} \theta \\ \dot{\theta} \end{bmatrix}$$
 $f(\overline{x}, \overline{u}) = 0$ $\overline{u} = 0$

Dipartimento
 di Ingegneria Gestionale,
 dell'Informazione e della Produzione

Equilibrium of LTI systems

Let's assess the presence of equilibrium in LTI systems

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

Let's say $\dot{x}(t) = 0$ at $u(t) = \overline{u}$

$$0 = A\bar{x} + B\bar{u} \implies A\bar{x} = -B\bar{u} \implies \bar{x} = -A^{-1}B\bar{u}$$

$$\det(A) \neq 0$$
The equilibria are: $A\bar{x} = -B\bar{u}$
The system $A\bar{x} = -B\bar{u}$ can have
• infinite solutions

• No solution

An equilibrium $\overline{\mathbf{x}}$ is said to be stable if, for each $\epsilon > 0$ there esists $\delta > 0$ such that for each initial state x_0 that satisfies:

 $\|x_0 - \bar{x}\| \le \delta$

 $\|x(t) - \bar{x}\| \le \epsilon \quad t \ge 0$

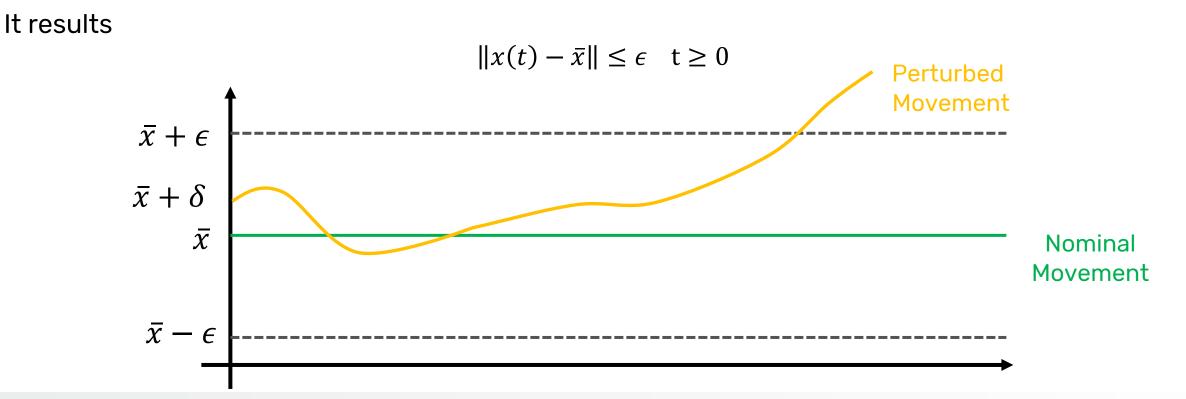
It results

 $\bar{x} + \epsilon$ $\bar{x} + \delta$ \bar{x} $\bar{x} - \epsilon$ $\bar{x} - \epsilon$

An equilibrium $\bar{\mathbf{x}}$ It is said to be **unstable** if it is not stable.

For each $\epsilon > 0$ does not exist $\delta > 0$ such that for each initial state x_0 that satisfies:

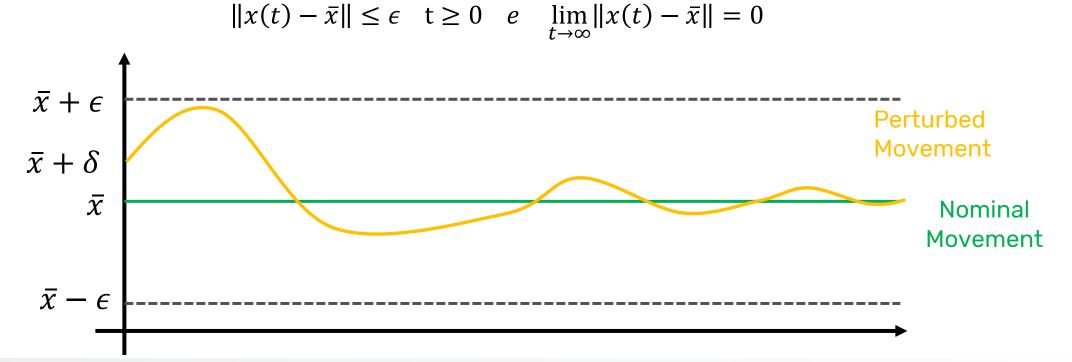
$$\|x_0 - \bar{x}\| \le \delta$$



An equilibrium $\overline{\mathbf{x}}$ is said to be asymptotically stable if, for each $\epsilon > 0$ Exists $\delta > 0$ such that for all initial states x_0 that satisfy:

$$\|x_0 - \bar{x}\| \le \delta$$

It results



Stability of LTI systems

 $\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$

The nominal movement of an LTI system is given by Lagrange's formula:

$$x(t) = e^{At}x_{t0} + \int_0^t e^{A(t-\tau)}Bu(\tau) d\tau$$

Assuming a perturbation of the initial condition $x_{t0} = \bar{x} + \delta_{\bar{x}}$ We get the perturbed movement:

$$\tilde{x}(t) = e^{At}\bar{x} + \int_0^t e^{A(t-\tau)}Bu(\tau) \,d\tau + e^{At}\delta_{\bar{x}}$$

Stability of LTI systems

$$\tilde{x}(t) = e^{At}\bar{x} + \int_0^t e^{A(t-\tau)}Bu(\tau) \,d\tau + e^{At}\delta_{\bar{x}}$$

The perturbed movement differs from the nominal movement only in that $\delta x(t) = e^{At} \delta_{\bar{x}}$. We can therefore deduce that, for an LTI system:

- The perturbed movement does not depend on the particular state of equilibrium. We can therefore speak of the stability of the system (→ global property)
- The difference between the nominal and the perturbed movement depends on the values assumed by the matrix A

Stability of LTI systems

$$\tilde{x}(t) - \bar{x} = e^{At} \delta_{\overline{x}}$$

We can deduce that:

- Asymptotically stable system
- Unstable system
- Stable System

 $\lim_{t\to\infty}e^{At}=0$

 e^{At} diverges with $t \to \infty$

 e^{At} bounded $\forall t$

A | Dipartimento
 I di Ingegneria Gestionale,
 D dell'Informazione e della Produzione

Stability theorem of LTI systems

1. A (continous time) LTI system is **asymptotically stable** if and only if all

eigenvalues of matrix A have negative real part

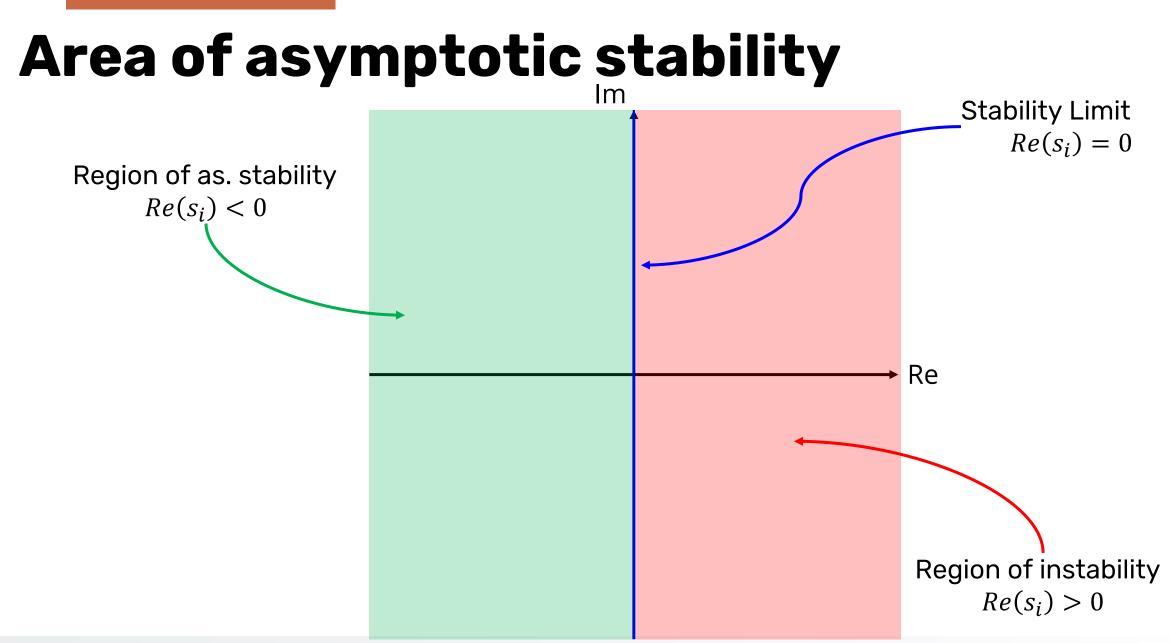
 $Re(s_i) < 0, \quad \forall i$

 An LTI system is unstable if matrix A has at least one eigenvalue with positive real part

$$\exists i^* : Re(s_{i^*}) > 0$$

 An LTI system is stable if matrix A has all eigenvalues with negative real part and one null

$$Re(s_i) < 0, \quad \forall i$$
$$\exists ! i^* : Re(s_{i^*}) = 0$$



Dipartimento
 di Ingegneria Gestionale,
 dell'Informazione e della Produzione

Properties of LTI systems

- 1. An as. Stable LTI system, if perturbed, tends to return to equilibrium before the perturbation.
- 2. At any constant input \bar{u} is associated **one and only one** state of equilibrium \bar{x}
- **3. A system as. stable is not affected by the initial conditions** (the movement of the state depends only on u(t))
- 4. With zero input, the movement of the state tends asymptotically to zero.
- 5. With $u(t) = \overline{u}$ the output of an as. stable system tends to the stationary value \overline{y} .
- 6. If the input is bounded, the output of an as. Stable LTI system will also be bounded

UNIVERSITÀ DEGLI STUDI DI BERGAMO

Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzion