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Lesson 2.

Dynamical Systems: Introduction
and classification

Antonio Ferramosca

University of Bergamo



Outline

1. Introduction to dynamical systems

2. Classification of dynamical systems
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Outline

1. Introduction to dynamical systems

2. Classification of dynamical systems
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Dynamic Systems

>

CAUSES » EFFECTS

>

A dynamic system is an agent that interacts with the surrounding
world, by means of some causes (inputs) operating on it and
which determines some effects (outputs), that are the answer of
the system to such stimulations.

We need mathematical models to describe systems.
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Dynamic Systems

What does dynamic means”?

input output Ay y
, S ( ) > ? J’( )
u(t) y(t) |:> -
Real functions of time flo tll 't flo il

The knowledge of the input at time t is not enough to univocally
determine the value of the output at time t.

We need some kind of memory. What kind of mathematical relation can
express it?
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What is a mathematical model?

- Mathematical models are mathematical objects that can be used to
describe, analyze, simulate the behavior of a dynamic system.

- Dynamic systems: phenomena or physical systems whose properties
change with time.

»The spread of an infectious disease:
»Dynamic of an airplane:

« A mathematical model is a that explains the relation
between the variable involved in the phenomenon/system.

* They represent only a simplified version of the real phenomena.

'''''''''''




Mathematical Models Classification

« Continuous-time model: set of that
describes the dynamical behavior of a phenomenon/system

over time

* Discrete-time model: set of that
describes the dynamical behavior of a phenomenon/system

over time

- Static model: simple static equation that describes the
behavior of a phenomenon/system without considering the
relation between time instants (i.e. Ohm’s Law: v = R * i)

n'F2'" | pIBERGAMO |




Example 1: SIR model

« Mathematical models describing the spread of an Infectious
Disease (Kermack and McKendrick, 1927)

« S(t): subjects (not infected) at time t
e |(1): subjects at time t
* R(t): subjects at time t (either recovered or dead,

cannot be infected again)
* N: constant number of subjects in the population

N=S(t)+I(t)+R(t), vt = 0



Example 1: SIR model
BIS(t)1(t)

S(t) =
() =
BS()I(t)
(t) N VI () 5
R<t) — Wl(t) RO — ;
S = %7 I = Cji_i’ R = CZ—? an infectious disease starts if‘hﬁl spread of




Example 1: SIR model
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Example 1: SIR model

SIR model: 5= 0.1, v= 0.05, N=1000
1000 ' T | | T | T | T
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Flattening the curve with
social distancing...
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Example 2: SIR model indiscrete time

St+1) = S(t) (2[()
It+1) = I(t)- 53(2](“ (1)

R(t+1) = R(t)+~I(t)

Future values of S, I, Rdepend on the past
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Example 2: SIR model in discrete time

1
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Example 2: SIR model in discrete time

* SIR models are a simplified mathematical generalization of a certain
phenomenon (seasonal flu, COVID, Ebola outbreaks, etc.).

* A lot of assumptions are made in order to make such a model work
* Nis constant
* Every infected subject needs the same time to recover or die.

« Without assumption, models would be more complex (i.e. a flight
simulators, F1 simulators, weather forecast models, etc.).

* A complex model is not always the best choice.

. uDI
/////////////




Input and Output variables

* SIR models are autonomous systems: their variables evolve “by
themselves”, there is no external action on the system.

* In general, dynamic systems are subject to the action of external signals
(that do not depend on the dynamic of the system), which manipulate
their behavior.

»Controlled Input: external signals that one can manipulate to make a
system behave as one desire. They can be manipulated

»>Disturbances: unwanted external signals that one cannot
manipulate. They can either be eliminated or not.

« We can also define the output of a system as the outcome of the
phenomenon that can be measured.

'''''''''''




Take a shower....

W HYLOHANAYL

e
S

Dipartimento
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» Outputs: Total water flow and
temperature.

» Controlled inputs: hot and cold
water handles position

» Disturbances: inlet water flows,
temperature
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Drive a car...

Let's suppose we want a model
of a car for programming cruise
control algorithm

9
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BG control

Prediction
model

Target glycemia

MPC-based control

system

r(t)

Optimization
algorithm
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Insulin

Meals

u(t)

Measurements

Glycemia

%3

Insulin: cause (input)

Meals: cause (disturbance)

Measured glycemia: effect (output)

y(t)
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Example 3: SIR model with vaccination

e Let define the rate of susceptible subjects vaccinated at time t

S = 53(2[“) o(1)S (1)
iy = 2000

R(t) = ~I(t)+v(t)S(t)

 v(t) manipulates the behavior of the SIR system




Example 3: SIR model with vaccination

SIR model with vaccination: 3= 0.4, v= 0.05, N=1000
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State variables

* SIR models are characterized by three main variables, S(t), I(t), R(t), which
perfectly describe the phenomenon/system at a certain time t.

 These variables are called the state of the system.

 These variables are internal variables and may be infinite. They provide a
of the system at time t.

* The state describes the of the system.

« State variables may or may not be measurable. In this last case, we can
estimate the state (or a part of it) based on the model.

'''''''''''




Graphical representation

INPUT u(t)

—)

OUTPUT y(t)

—)

STATE x(t)

DISTURBANCES w(t)
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Generic internal representation

A generic continuous time model is described by the following

set of equations:
p(t) = flz(t), u(?))
y(t) = g(z(t),u(t))

Where:

r € R" isthe of the system

u € R™ isthe of the system

y € RP is the of the system
f(,-) R"™ x R™ — R" is the (a system of eq. in fact)
g(.’ ) R"™ x R™ — RP Iisthe

uuuuuuu
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Generic internal representation

 For our SIR model:

CS(t) [ —u(1)S()
z(t) = | I(t) |, u®)=v, flz(),ul))= ”W@ — I(t)
| R(t) L I ) u(t)S(t)
 We can also define an output as the number of known infected

y(t) = H(t), g(x(t),u(t)) = al(t) + b(S(t) + R(?))

Where o is the rate of the reported case and b is the rate of diagnosis errors.

DDDDDDDDDD




Dynamical System Identification

Models that describe complex phenomena are not easy to be found.

To create a model a very good knowledge of the problem is required as
well as a good knowledge of the dynamical system theory.

An alternative is to use specific sets of input-output data obtained from
experiments, to infer the underline models by means of specific
algorithms.

n' M’ | DIBERGAMO | d




Outline

1. Introduction to dynamical systems

2. Classification of dynamical systems
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What is a mathematical model?

- Mathematical models are mathematical objects that can be used to
describe, analyze, simulate the behavior of a dynamic system

 Dynamic systems: phenomena or physical systems whose properties
change with time.

»The spread of an infectious disease:
»Dynamic of an airplane:

« A mathematical model is a that explains the relation
between the variable involved in the phenomenon/system.

* They represent only a simplified version of the real phenomena.

'''''''''''




Graphical representation

INPUT u(t)

Signals that
modify the
behavior of a

user

system and can be
controlled by the

7

Signals that can
be measured

STATE x(t)

OUTPUT y(t) /

Internal variables that
describe the dynamic

Signals that modify
the behavior of a
system and cannot
be controlled by
the user

/ of a system

DISTURBANCES w(t)

/o0 AN | UNIVERSITA srtiment
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Static vs dynamical systems

In a it is enough to know u(t) in order to compute y(t).
The past has no effect on their evolution.

Ohm’'s law
v(t) — Rz’(t)

oy
5 J\/\/\ﬁ Given i(t) it is always

possible to compute v(t)

Resistor Resistor Symbol

N\ SIT : ‘
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Static vs dynamical systems

In a there is a sort of memory: one needs to
know the past state in order to compute the new one.

1.2

O
Amplitud

(%1 (t) _I_

0.2 5
Vo ()
v Y O 1 1 | 1 1
0 0.2 0.4 0.6 0.8 1 1.2
Time (seconds)

ﬂﬂﬂﬂﬂﬂﬂﬂﬂ
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Example: water tank

dh(t
Inlet flow qu(t) . qOut(t) — A d(t )

A1) ah(t) __n/hD gt
Water level dt A A

h(t : :
Gout () (t) State (internal variable) of

the system
Outlet flow

/o oaNs | UNIVERSITA | Dipartimento
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Example: blood glucose-insuline model

Meal absorption subsystem

disturbance

Blood Glucose

Insulin absorption subsystem

7E
HPAS ﬂ/m b
(\(m\

UNIVERSITA

: | DEGLI STUDI

DI BERGAMO

output

dQy(t) 1 1
T —e—ng(t) + e_stto(t)
dQsto(t) 1 1
—dat o, Qsto(t) + 9—57‘(0
dG(t
di ) =0y — 0,G(t) — 0,0Q;(t) +83Q4(t)
doi) 1 1
i _6_4Qi(t) + aQisub(t)
insub(t) _ 1 1
a0 _9_4Qisub(t) + 9—411(15)
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State variables

In a dynamical system knowing Is not enough to determine

A dynamical system has some kind of memory:
»the value of the output depends on the actual state
» The value of the actual state depends on the previous state.

A dynamical system is fully characterized by its input, its output
and its state.

These are the signals of system.

DDDDDDDDDD




State variables

The state variables are the internal variables whose initial
condition represent the minimum information necessary to
compute the output y(t) that corresponds to a certain input u(t).

z(t) = fla(t) u(t))
y(t) = glz(t), u(t))

The dimension of the state n, i.e. x € R", defines the of the
system.
" S(0)
» For instance a SIR model is a system of since: z(t) = I((t))
R
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Continuous vs Discrete signals

A signal is a real function of time

Continuous signal

Discrete signal

Reconstruction

H

||||||||||||||

100 200 300 400 500 600 700 800
Continous time

R—->R

UNIVERSITA pa
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900 1000

123 45 6 7 8 9101112131415 16 17 18 19 20

Only possible only in certain cases.

Discrete time

Z — R




Continuous-time models

»States, inputs and outputs are continuous signals.
»Usually employed to represent physical system (reality is continuous).
»Representation: a set of

Inlet flow

dh(t) kR gnlt)
Y
w(t) = h(t)
u(t) = qin(t)
y(t) — QOut(t)

h(t)

Water level

Qout (t)

Outlet flow

A

K/ (1) N u(t)
A
Kk (1)

/

Output
transformation

State equation

36



Discrete-time models

States, inputs and outputs are signals.

Most employed models in practice: reality 13 , but
sensors/actuators work in

>t is impossible to store an infinite number of data (continuous
signal).

Representation: a set of

Also called

n'l>/* | prBercaMo | d




Discrete-time water tank

Gin(1) ~

Inlet flow

At
h<t + 1) — h<t) £ 7 ) (%n(t) QOut(t))
State: #(t) = h(?)
Input: u(t) = gin(?)
i) Output:y(t) = goult)
Water level l
QOut(t) At
Outlet flow .flf(t — 1) — ;C(t) —+ X(U(t) — R\/ ZE(t))
y(t) = r\Vx(?)

= V(1) + qin(t) - At — qour(t) - Al
= A-h(t) + gin(t) - At — gou(t) - Al

H di Ingegneria Gestionale
7/\ DI BERGAMO dell'iInformazione e della Produzione
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Discrete-time models

»Discrete-time models are less general than the continuous one,
because, typically, they strongly depend on the sampling interval
At.

»There exist techniques that allow to go from continuous time to
discrete time (with At known), but not vice versa.

»Both representations are important. The most useful one depends
on the purpose of the modelization.

n'l>/* | prBercaMo | d




State-space representation

r(t+1) = f(z(t),u(t)) t € Z
y(t) = g(x(t),u(?)) z(0) =
r € R" isthe of the system
w € R™ isthe of the system : order of the system
y € RP is the of the system
f(,-)  R"xR™ — R" isthe (a system of eg. in fact)
g(-,-) : R"x R™ — RP isthe

oo Ns | UNIVERSITA
i 1,/,—,\Ail 1%
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Classifications

A system is called strictly proper if the output transformation only
depends on the value of the state. Otherwise, is said proper.

p(t+1) = flx(), u(t)) r(t+1) = f(z(), ul))
y(t) = g(z(t),u(t)) y(t) = g(z(t))

PROPER STRICTLY PROPER

41



Classifications

> A system is called linear if f{.) and g(.) are linear functions of the
state and the input. Otherwise, is said non-=linear.

»>A system is called time variant if f(.) and g(.) depends explicitly
on the value of t. Otherwise is said time=invariant.

r(t+1) = fla(t), u)) z(t+1) = f(z(t) ult)t)
y(t) = gz(t),u(t)) y(t) = glx(t),u(t),?)

TIME-INVARIANT TIME-VARIANT

/e s | UNIVERSITA partimentt

gﬁ/o\'ﬁ : ‘ DEGLI STUDI | diIngegneria Gestionale
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Classifications

Last, but not least, we classify a system based on the dimension of its input and output

» A system is called if the input and the output are
scalar,i.e.u(t) e R y(t) ER

» A system is called if the input dimension is >1 and the
outputis scalar, i.e. u(t) € R™,y(t) e R,m > 1

» A system is called if the input is scalar and the output
dimensionis >, i.e.u(t) e R, y(t) EeRP,p > 1

» A system is called if the input and output dimensions
are>l,ieu(t) eR"yt) ERP,mM>1,p>1

/e i50~Ns | UNIVERSITA
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Example 1: water tank

N
S
||
=N
=
S

» The system is nonlinear.

» The system is time-invariant.

> Order: 1 (only one state)

» SISO system: only one input and one output

> Strictly proper: the output transformation does not depend on u(t)

DI BERGAMO | dell'r




MIMO system: 2 input and 2 output
Strictly proper: the output transformation does not depend on u(t)

/ \ UNIVERSITA : ‘
[l ol ) ‘ DEGLI STUDI | di Ingeg ,

& DDDDDDDD 0 | delll J 45
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Example 2: 4 water tanks 0] w - [0
_ | ha(?) 9 (?
X =1 (1) L [m
At h(t) | Y= h2<t>]
it +1) = m(t) = —z(a1yv/29m(t) + azy/2ghs(t) +Vaga(t
A
hQ(t-I-l) = hg(t)— St( \/29h2 —l—a4\/2gh4 —I—’qub g @m
A
ho(t+1) = hy(t) =~ (asy/2ghs(0) + (1~ (1) il § e
A va yb
Bt +1) = halt) = o (aay/29Ra(0) + (1= 70)ga(t) L /W
» The system is nonlinear. " "
» The system is time-invariant. QO T Q-
» Order: 4
>
>



Example 3: SIR with vaccination

S(t41) = S(t>—55(2[(t)—v(t)5(t)
ey = 10+ 2l [0,
Rt+1) = R(t)+~I#) +v(t)S() R()

y(t) = =al(t)+b(S(t) + R(t))

» The system is nonlinear.

» The system is time-invariant.

» Order: 3

» SISO system: only one input and one output

> Strictly proper: the output transformation does not depend on u(t)

DI BERGAMO | dell'r




Example 4: bg-insuline model

dG
x1 () dit) =09 —0,G(t) —0,0Q;(t) +65Q,4(t)

» The system s linear.
no] 28 Too+to© > The system is time invariant.
at O O > Order: 5
40, (6) . , » MISO system: 2 inputs and 1 output
5O g = g, Y ® +gu® > Strictly Proper: the output
transformation does not depend on u(t)
dQ,(t) 1 1
x4 (1) dt - _e_ng(t) + e_stto(t)
y(t) = G(¢t)
dQsto(t) 1 1 . . . . .
x5 (t) e EQSw (t) + e—sr(t) u(t) = insuline infusion (controllable input)

r(t) = meals (non — controllable input, disturbance)

:‘}\’/hf:??ﬂs?‘g UNIVERSITA ‘
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Example S
ri(t+1) = 2x9(t) — u(t)
To(t+1) = t)

y(t) = x1()

=

1
() + ¢ - u(t)

o

» The system is linear.

» The system is time variant.

» Order: 2

» SISO system: only one input and one output

> Proper: the output transformation depends on u(t)
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State variables

»The number of states variables n determines the complexity of the system.

JA more complex system can model the same phenomena more
accurately.

»With a fixed complexity the order of the system is uniquely determined.

»There are different choices of the state variables that define the same input-
output relation, even if the order is always the same.

»The minimum number of states is called minimal representation, and
equals the number of differential (difference) equations describing the
phenomenon.

»Sometimes the context provides criteria (physic, for example) for the
selection of the state variables.

'''''''''''
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