

UNIVERSITÀ DEGLI STUDI DI BERGAMO

Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione

Lesson 2.

Dynamical Systems: Introduction and classification

CONOTRL AND MODELING OF BIOLOGICAL SYSTEMS

MASTER DEGREE IN MEDICAL ENGINEERING

TEACHER Antonio Ferramosca

PLACE University of Bergamo

Outline

- 1. Introduction to dynamical systems
- 2. Classification of dynamical systems

Dipartimento
 di Ingegneria Gestionale,
 dell'Informazione e della Produzione

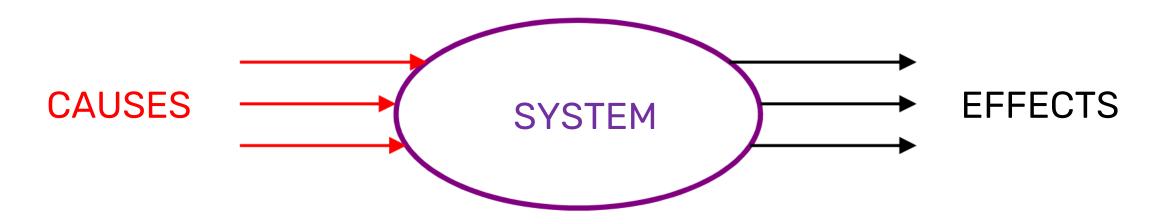
Outline

1. Introduction to dynamical systems

2. Classification of dynamical systems

Dipartimento
 di Ingegneria Gestionale,
 dell'Informazione e della Produzione

Dynamic Systems

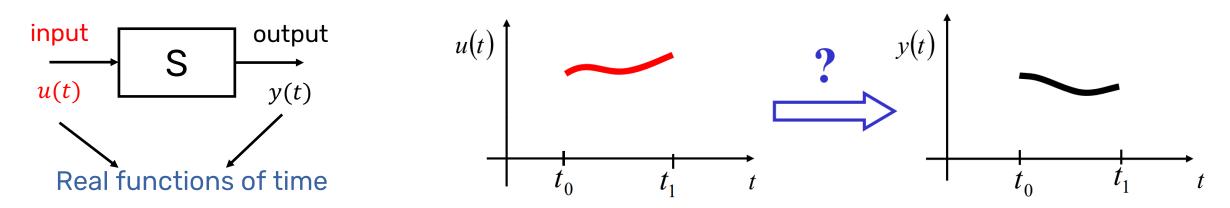


A dynamic system is an agent that interacts with the surrounding world, by means of some **causes (inputs)** operating on it and which determines some **effects (outputs)**, that are the answer of the system to such stimulations.

We need mathematical models to describe systems.

Dynamic Systems

What does **dynamic** means?



The knowledge of the input at time *t* is **not enough** to univocally determine the value of the output at time *t*.

We need some kind of memory. What kind of mathematical relation can express it?

What is a mathematical model?

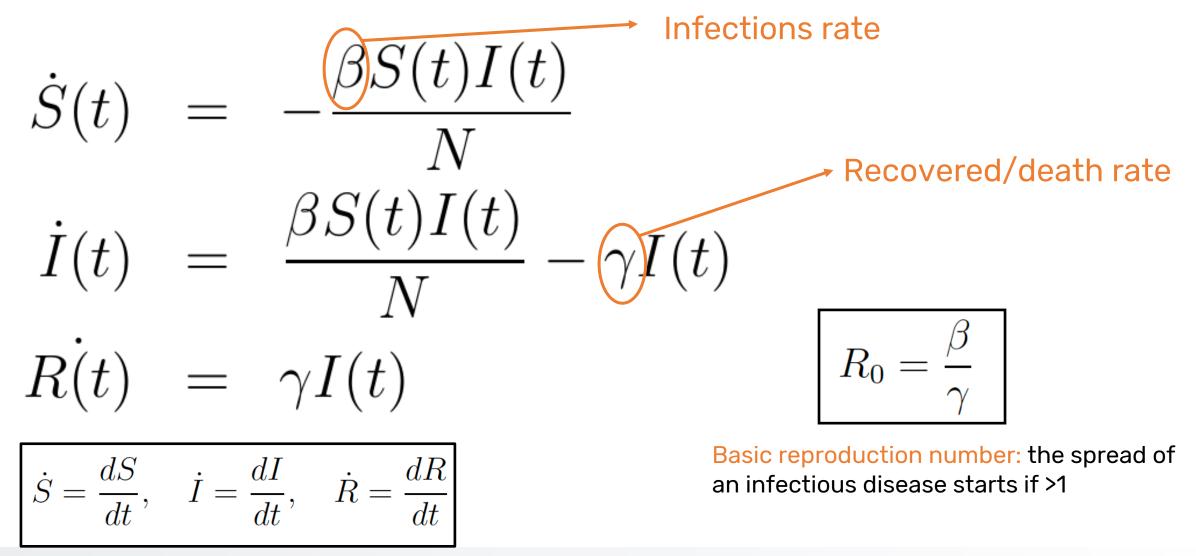
- Mathematical models are mathematical objects that can be used to describe, analyze, simulate the behavior of a dynamic system.
- **Dynamic systems**: phenomena or physical systems whose properties change with time.
 - > The spread of an infectious disease: phenomenon.
 - > Dynamic of an airplane: physical system.
- A mathematical model is a **set of equations** that explains the relation between the variable involved in the phenomenon/system.
- They represent only a simplified version of the real phenomena.

Mathematical Models Classification

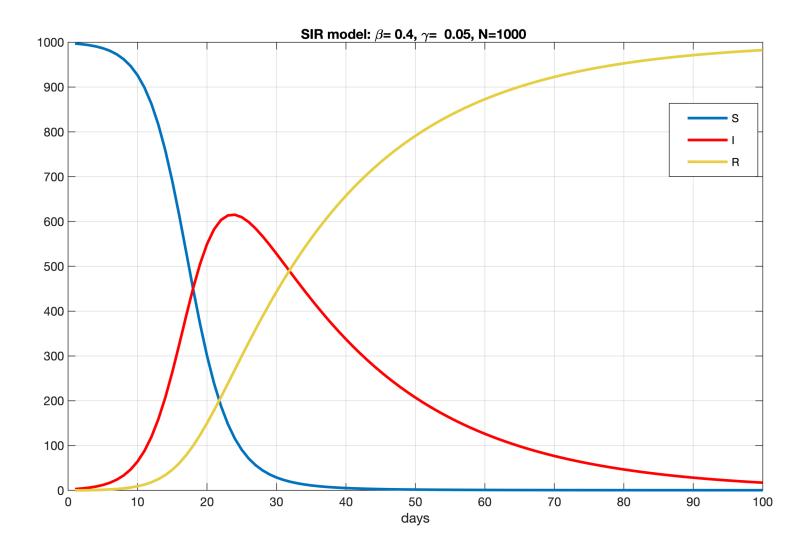
- Continuous-time model: set of differential equations that describes the dynamical behavior of a phenomenon/system over time $t \in \mathbb{R}$
- Discrete-time model: set of difference equations that describes the dynamical behavior of a phenomenon/system over time $t\in\mathbb{Z}$
- Static model: simple static equation that describes the behavior of a phenomenon/system without considering the relation between time instants (i.e. Ohm's Law: v = R * i)

- Mathematical models describing the spread of an Infectious Disease (*Kermack and McKendrick, 1927*)
- S(t): susceptible subjects (not infected) at time t
- I(t): infected subjects at time t
- R(t): removed subjects at time *t* (either recovered or dead, cannot be infected again)
- N: constant number of subjects in the population

$$N = S(t) + I(t) + R(t), \forall t \ge 0$$

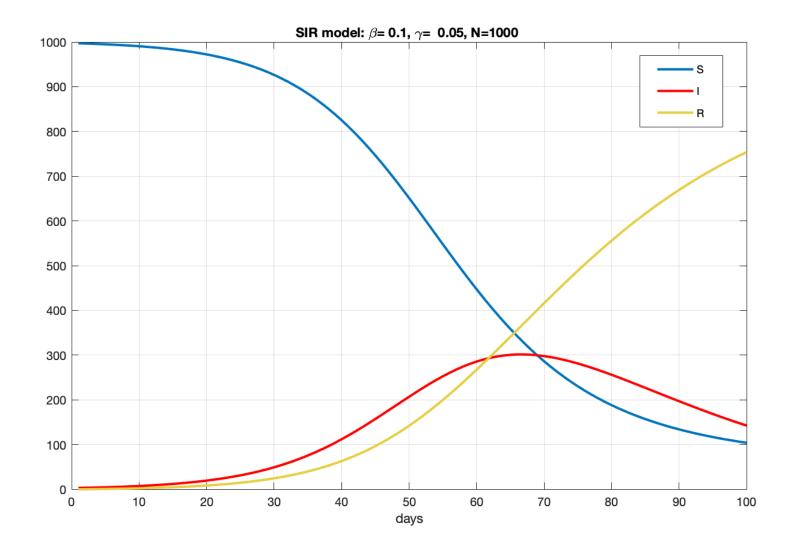


Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione



$$\beta = 0.4, \quad \gamma = 0.05$$

di Ingegneria Gestionale, dell'Informazione e della Produzione



$$\beta = 0.1, \quad \gamma = 0.05$$

Flattening the curve with social distancing...

Example 2: SIR model in discrete time

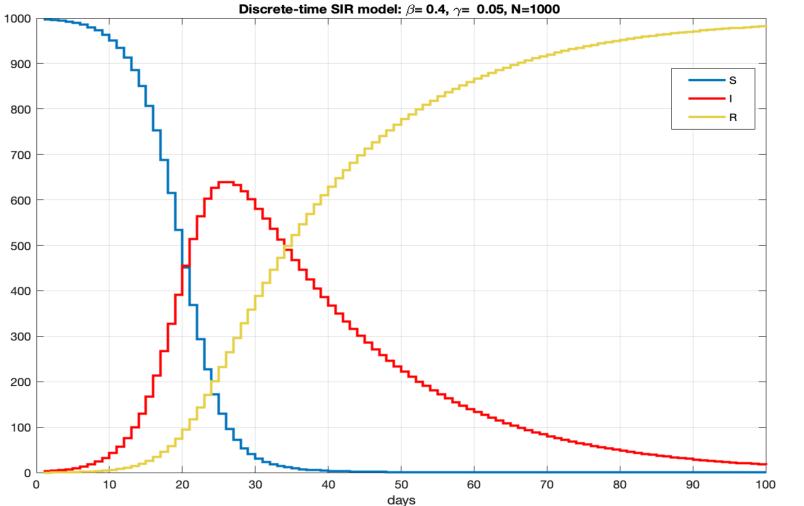
Difference equations

$$S(t+1) = S(t) - \frac{\beta S(t)I(t)}{N}$$
$$I(t+1) = I(t) + \frac{\beta S(t)I(t)}{N} - \gamma I(t)$$
$$R(t+1) = R(t) + \gamma I(t)$$

Future values of S, I, R depend on the past

di Ingegneria Gestionale, dell'Informazione e della Produzione

Example 2: SIR model in discrete time



t is the time step

In this case t =1 day

Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione

Example 2: SIR model in discrete time

- SIR models are a simplified mathematical generalization of a certain phenomenon (seasonal flu, COVID, Ebola outbreaks, etc.).
- A lot of assumptions are made in order to make such a model work
 - N is constant
 - Every infected subject needs the same time to recover or die.
- Without assumption, models would be more complex (i.e. a flight simulators, F1 simulators, weather forecast models, etc.).
- A complex model is not always the best choice.

"All models are wrong, but some are useful"

Input and Output variables

- SIR models are **autonomous systems**: their variables evolve "by themselves", there is no external action on the system.
- In general, dynamic systems are subject to the action of external signals (that do not depend on the dynamic of the system), which manipulate their behavior.

Controlled Input: external signals that one can manipulate to make a system behave as one desire. They can be manipulated
 Disturbances: unwanted external signals that one cannot manipulate. They can either be eliminated or not.

• We can also define the **output** of a system as the outcome of the phenomenon that can be measured.

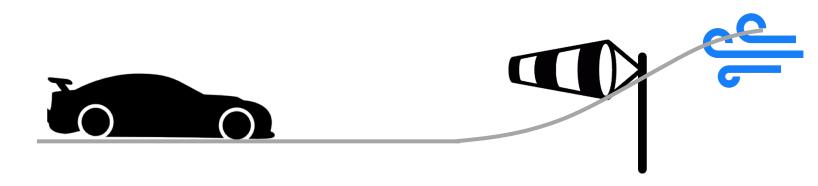
Take a shower....

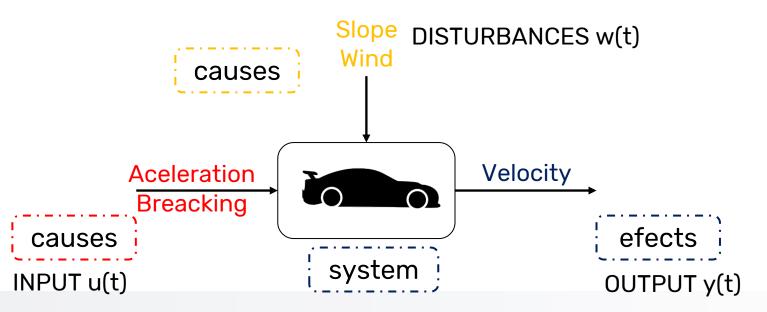
- Outputs: Total water flow and temperature.
- Controlled inputs: hot and cold water handles position
- Disturbances: inlet water flows, temperature

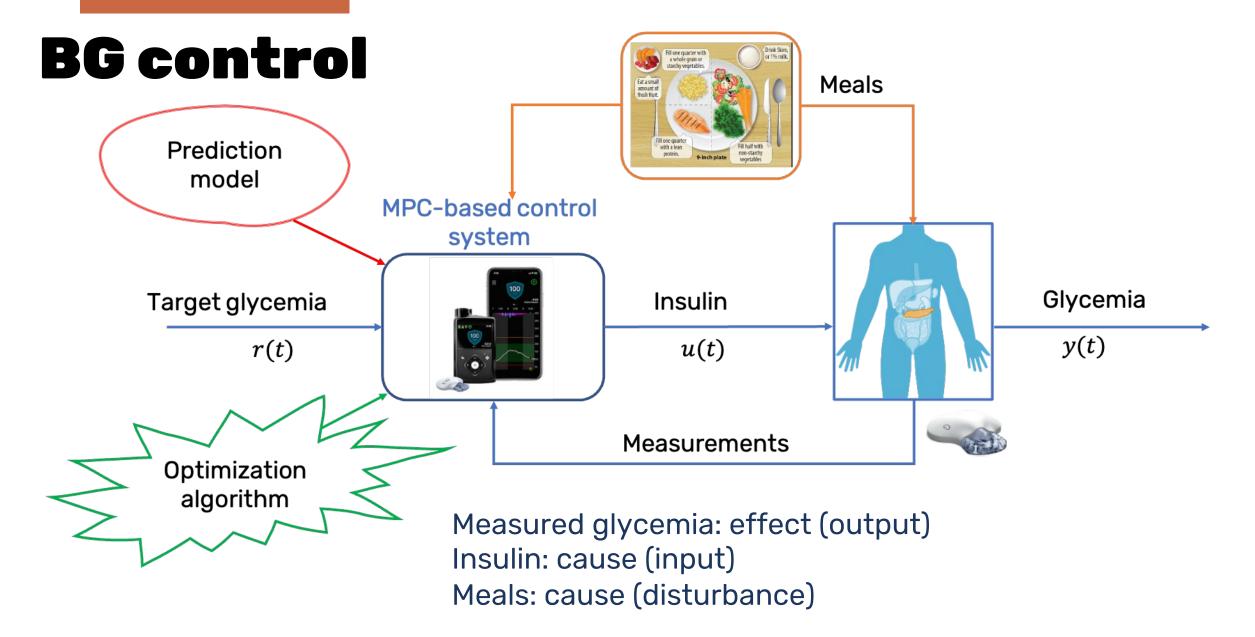
Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione

Drive a car...

Let's suppose we want a model of a car for programming cruise control algorithm







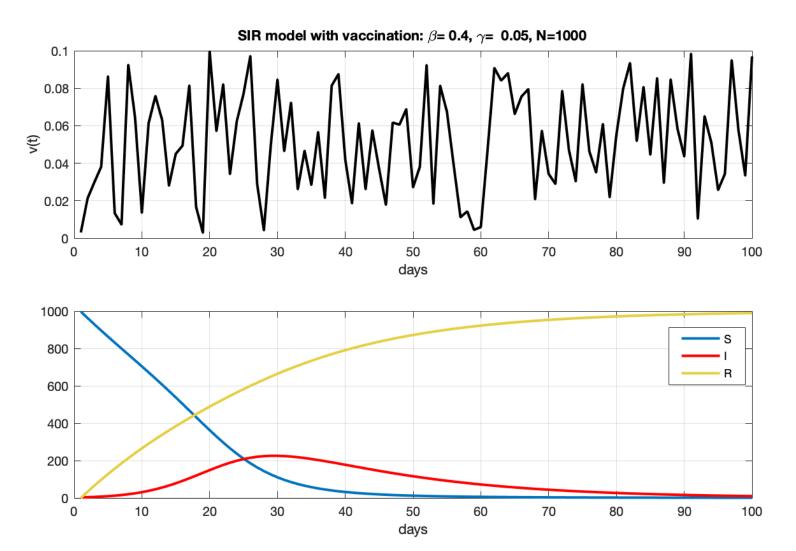
Example 3: SIR model with vaccination

• Let v(t) define the rate of susceptible subjects vaccinated at time t

$$\dot{S}(t) = -\frac{\beta S(t)I(t)}{N} - v(t)S(t)$$
$$\dot{I}(t) = \frac{\beta S(t)I(t)}{N} - \gamma I(t)$$
$$\dot{R}(t) = \gamma I(t) + v(t)S(t)$$

• v(t) manipulates the behavior of the SIR system

Example 3: SIR model with vaccination

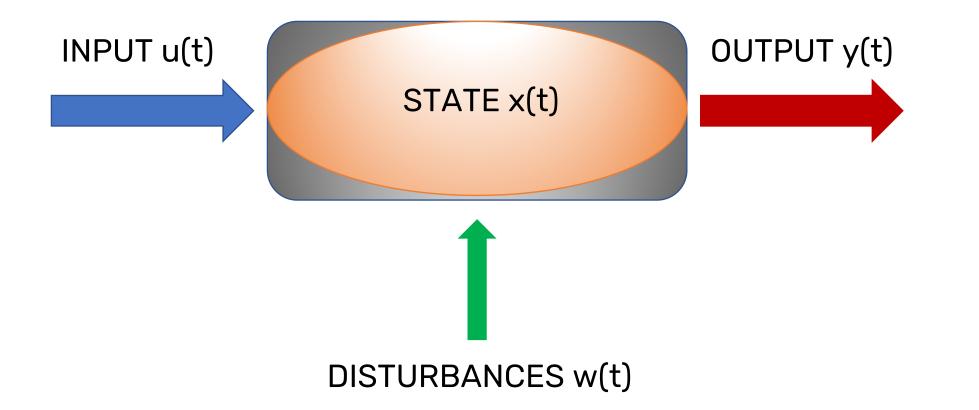


- The number of infected is reduced by manipulating the number of suscetibles through vaccinations
- If v(t) is controlled by a user, it is a controlled input of the system

State variables

- SIR models are characterized by three main variables, *S(t), I(t), R(t)*, which perfectly describe the phenomenon/system at a certain time *t*.
- These variables are called the **state of the system**.
- These variables are **internal variables** and may be infinite. They provide a **picture** of the system at time *t*.
- The state describes the **dynamic** of the system.
- State variables may or may not be measurable. In this last case, we can estimate the state (or a part of it) based on the *known* input-output model.

Graphical representation



Generic internal representation

A generic state-space continuous time model is described by the following set of equations:

$$\dot{x}(t) = f(x(t), u(t))$$
$$y(t) = g(x(t), u(t))$$

Where:

- $x \in \mathbb{R}^n$ is the state of the system
- $u \in \mathbb{R}^m$ is the input of the system
- $y \in \mathbb{R}^p$ is the output of the system
- $f(\cdot, \cdot)$: $\mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ is the state equation (a system of eq. in fact)
- $q(\cdot, \cdot)$: $\mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^p$ is the output tranformation

Generic internal representation

• For our SIR model:

$$x(t) = \begin{bmatrix} S(t) \\ I(t) \\ R(t) \end{bmatrix}, \quad u(t) = v, \quad f(x(t), u(t)) = \begin{bmatrix} -\frac{\beta S(t)I(t)}{N} - v(t)S(t) \\ \frac{\beta S(t)I(t)}{N} - \gamma I(t) \\ \gamma I(t) + v(t)S(t) \end{bmatrix}$$

• We can also define an output H(t) as the number of known infected

$$y(t) = H(t), \quad g(x(t), u(t)) = aI(t) + b(S(t) + R(t))$$

Where *a* is the rate of the reported case and *b* is the rate of diagnosis errors.

Dynamical System Identification

Models that describe complex phenomena are not easy to be found.

To create a model a very **good knowledge of the problem** is required as well as a **good knowledge of the dynamical system theory.**

An alternative is to use specific sets of **input-output data** obtained from experiments, to infer the underline models by means of specific algorithms.

DYNAMICAL SYSTEM IDENTIFICATION

A | Dipartimento
 di Ingegneria Gestionale,
 dell'Informazione e della Produzione

Outline

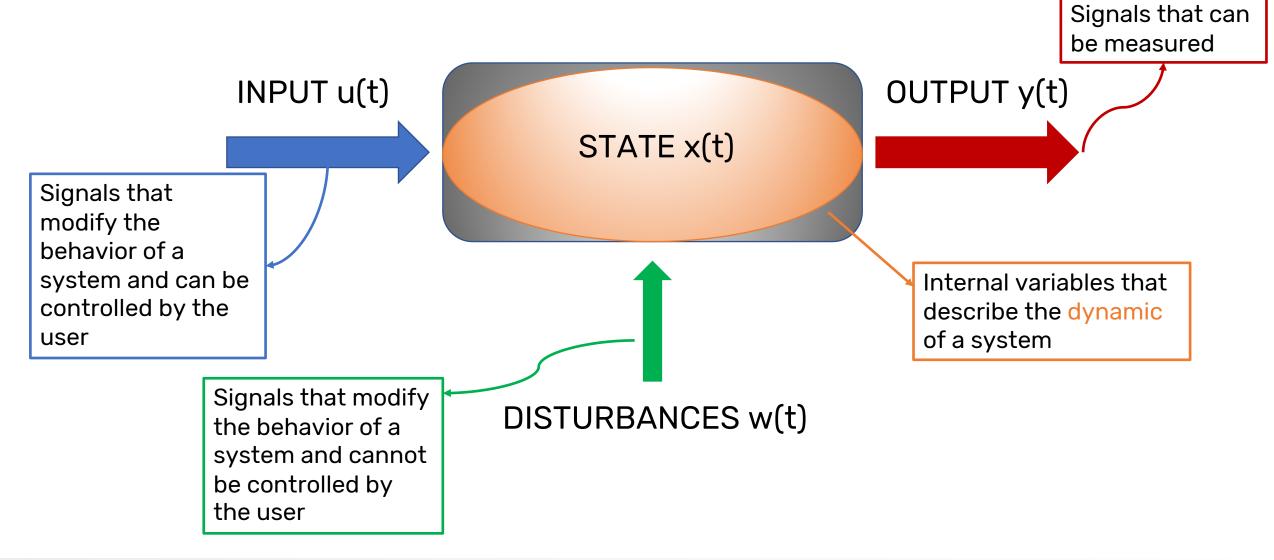
- 1. Introduction to dynamical systems
- 2. Classification of dynamical systems

Dipartimento
 di Ingegneria Gestionale,
 dell'Informazione e della Produzione

What is a mathematical model?

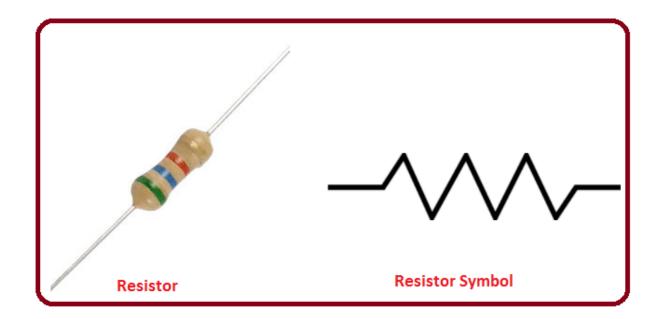
- Mathematical models are mathematical objects that can be used to describe, analyze, simulate the behavior of a dynamic system
- **Dynamic systems**: phenomena or physical systems whose properties change with time.
 - The spread of an infectious disease: phenomenon.
 - > Dynamic of an airplane: physical system.
- A mathematical model is a **set of equations** that explains the relation between the variable involved in the phenomenon/system.
- They represent only a simplified version of the real phenomena.

Graphical representation



Static vs dynamical systems

In a static system it is enough to know u(t) in order to compute y(t). The past has no effect on their evolution.



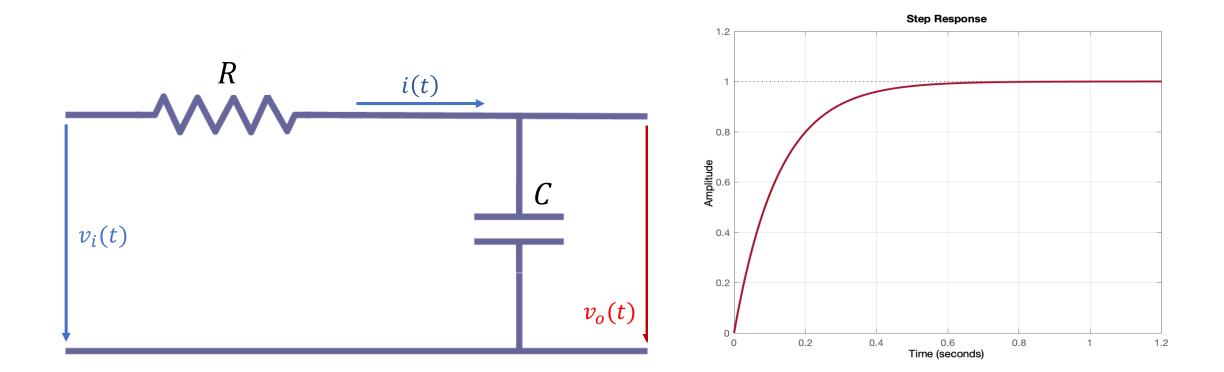
Ohm's law v(t) = Ri(t)

Given i(t) it is always possible to compute v(t)

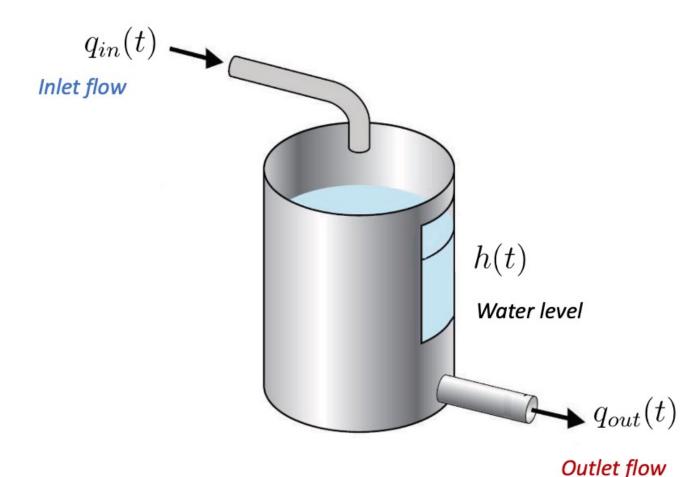
Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione

Static vs dynamical systems

In a dynamical system there is a sort of memory: one needs to know the past state in order to compute the new one.



Example: water tank

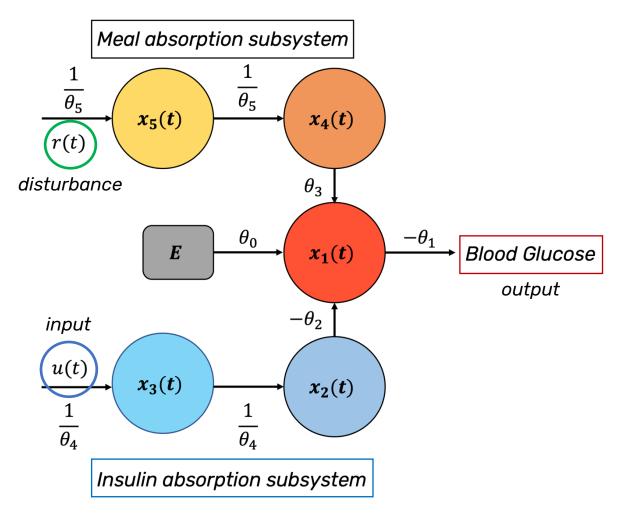


 $q_{in}(t) - q_{out}(t) = A \frac{dh(t)}{dt}$ $q_{out}(t) = \kappa \sqrt{h(t)}$

$$\frac{dh(t)}{dt} = -\frac{\kappa\sqrt{h(t)}}{A} + \frac{q_{in}(t)}{A}$$

h(t) State (internal variable) of the system

Example: blood glucose-insuline model



$$\frac{dQ_g(t)}{dt} = -\frac{1}{\theta_5}Q_g(t) + \frac{1}{\theta_5}Q_{sto}(t)$$

$$\frac{dQ_{sto}(t)}{dt} = -\frac{1}{\theta_5}Q_{sto}(t) + \frac{1}{\theta_5}r(t)$$

$$\frac{dG(t)}{dt} = \theta_0 - \theta_1 G(t) - \theta_2 Q_i(t) + \theta_3 Q_g(t)$$

$$\frac{dQ_i(t)}{dt} = -\frac{1}{\theta_4}Q_i(t) + \frac{1}{\theta_4}Q_{i_{sub}}(t)$$

$$\frac{dQ_{i_{sub}}(t)}{dt} = -\frac{1}{\theta_4}Q_{i_{sub}}(t) + \frac{1}{\theta_4}u(t)$$

State variables

In a dynamical system knowing u(t) is not enough to determine y(t).

A dynamical system has some kind of memory:
➤ the value of the output depends on the actual state
➤ The value of the actual state depends on the previous state.

A dynamical system is fully characterized by its input, its output and its state.

These are the **signals** of system.

State variables

The state variables x(t) are the internal variables whose initial condition $x(t_0)$ represent the minimum information necessary to compute the output y(t) that corresponds to a certain input u(t).

$$\dot{x}(t) = f(x(t), u(t))$$
$$y(t) = g(x(t), u(t))$$

The dimension of the state n, i.e. $x \in \mathbb{R}^n$, defines the **order** of the system.

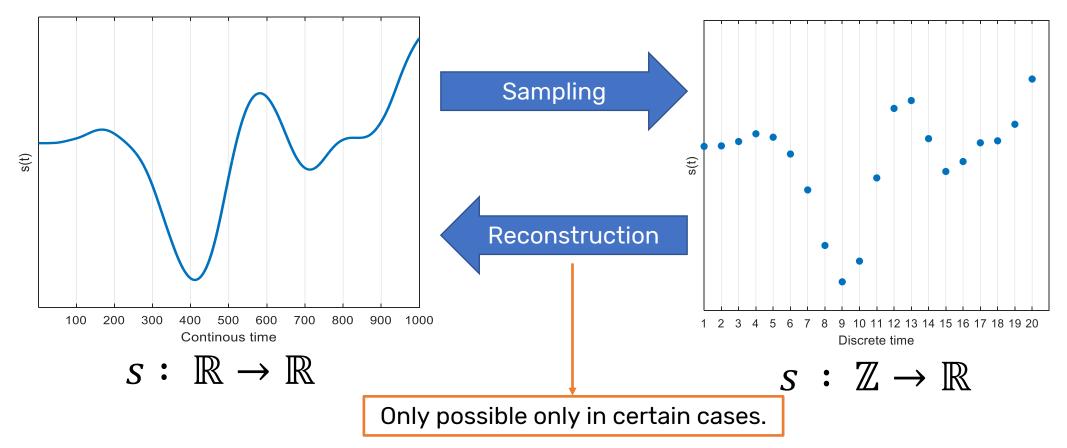
For instance a SIR model is a system of order 3 since: $x(t) = \begin{bmatrix} S(t) \\ I(t) \\ R(t) \end{bmatrix}$

Continuous vs Discrete signals

A signal is a **real function** of time

Continuous signal

Discrete signal

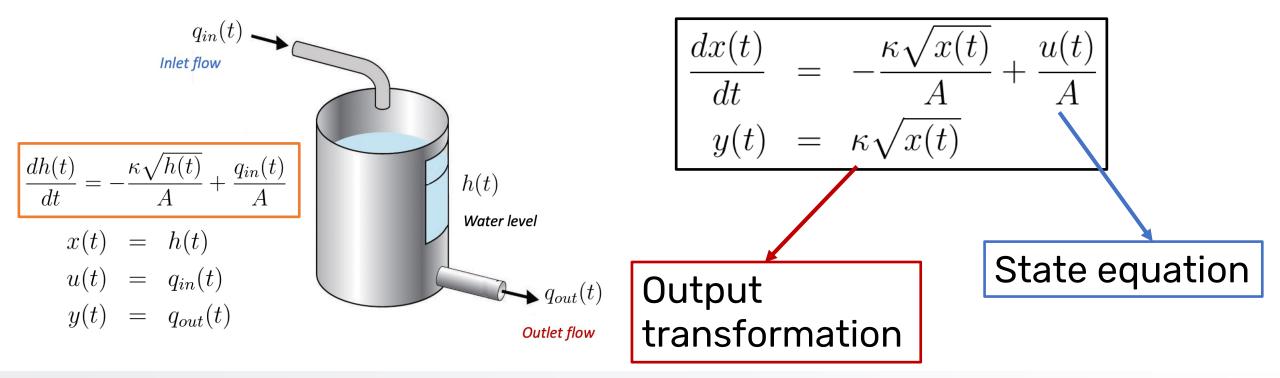


Continuous-time models

 \succ States, inputs and outputs are continuous signals.

>Usually employed to represent physical system (reality is continuous).

Representation: a set of differential equations



Discrete-time models

States, inputs and outputs are **discrete** signals.

Most employed models in practice: **reality is continuous, but sensors/actuators work in discrete time.**

➢It is impossible to store an infinite number of data (continuous signal).

Representation: a set of finite-difference equations.

Also called digital models.

Discrete-time water tank

$$\begin{array}{c} \begin{array}{c} q_{in}(t) \\ \text{Inlet flow} \end{array} & h(t+1) = h(t) + \frac{\Delta t}{A} \cdot \left(q_{in}(t) - q_{out}(t)\right) \\ \\ h(t) \\ h(t) \\ \text{Water level} \end{array} & \\ \hline \\ N(t+1) = V(t) + q_{in}(t) \cdot \Delta t - q_{out}(t) \cdot \Delta t \\ A \cdot h(t+1) = A \cdot h(t) + q_{in}(t) \cdot \Delta t - q_{out}(t) \cdot \Delta t \end{array} & \\ \end{array} \\ \begin{array}{c} \text{State: } x(t) = h(t) \\ \text{Input: } u(t) = q_{in}(t) \\ \text{Output:} y(t) = q_{out}(t) \\ \text{Output:} y(t) = q_{out}(t) \\ \end{array} \\ x(t+1) = x(t) + \frac{\Delta t}{A}(u(t) - \kappa \sqrt{x(t)}) \\ y(t) = \kappa \sqrt{x(t)} \end{array}$$

Discrete-time models

>Discrete-time models are less general than the continuous one, because, typically, they strongly depend on the sampling interval Δt .

There exist techniques that allow to go from continuous time to discrete time (with Δt known), but not vice versa.

Both representations are important. The most useful one depends on the purpose of the modelization.

State-space representation

$$\begin{aligned} x(t+1) &= f(x(t), u(t)) \\ y(t) &= g(x(t), u(t)) \end{aligned}$$

$$\begin{array}{rrrr} t & \in & \mathbb{Z} \\ x(0) & = & x_0 \end{array}$$

- $x \in \mathbb{R}^n$ is the state of the system
- $u \in \mathbb{R}^m$ is the input of the system
- $y \in \mathbb{R}^p$ is the output of the system

n: order of the system

- $f(\cdot, \cdot)$: $\mathbb{R}^n imes \mathbb{R}^m o \mathbb{R}^n$ is the state equation (a system of eq. in fact)
- $g(\cdot, \cdot)$: $\mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^p$ is the output tranformation

Classifications

A system is called **strictly proper** if the output transformation only depends on the value of the state. Otherwise, is said **proper**.

$$\begin{aligned} x(t+1) &= f(x(t), u(t)) \\ y(t) &= g(x(t), u(t)) \end{aligned}$$

$$\begin{array}{rcl} x(t+1) &=& f(x(t),u(t)) \\ y(t) &=& g(x(t)) \end{array}$$

PROPER

STRICTLY PROPER

di Ingegneria Gestionale, dell'Informazione e della Produzione

Classifications

➤A system is called linear if f(.) and g(.) are linear functions of the state and the input. Otherwise, is said non-linear.

➤A system is called time variant if f(.) and g(.) depends explicitly on the value of t. Otherwise is said time-invariant.

$$\begin{aligned} x(t+1) &= f(x(t), u(t)) \\ y(t) &= g(x(t), u(t)) \end{aligned}$$

$$\begin{aligned} x(t+1) &= f(x(t), u(t), t) \\ y(t) &= g(x(t), u(t), t) \end{aligned}$$

TIME-INVARIANT

TIME-VARIANT

Classifications

Last, but not least, we classify a system based on the dimension of its input and output

- ≻ A system is called SISO (Single Input-Single Output) if the input and the output are scalar, i.e. $u(t) \in \mathbb{R}$, $y(t) \in \mathbb{R}$
- ≻ A system is called MISO (Multi Input-Single Output) if the input dimension is >1 and the output is scalar, i.e. $u(t) \in \mathbb{R}^m$, $y(t) \in \mathbb{R}$, m > 1
- > A system is called SIMO (Single Input-Multi Output) if the input is scalar and the output dimension is >1, i.e. $u(t) \in \mathbb{R}, y(t) \in \mathbb{R}^p, p > 1$
- ≻ A system is called MIMO (Multi Input Multi Output) if the input and output dimensions are >1, i.e. $u(t) \in \mathbb{R}^m$, $y(t) \in \mathbb{R}^p$, m > 1, p > 1

Example 1: water tank

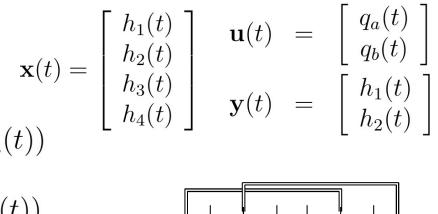
$$\begin{aligned} x(t+1) &= x(t) + \frac{\Delta t}{A}(u(t) - \kappa \sqrt{x(t)}) \\ y(t) &= \kappa \sqrt{x(t)} \end{aligned}$$

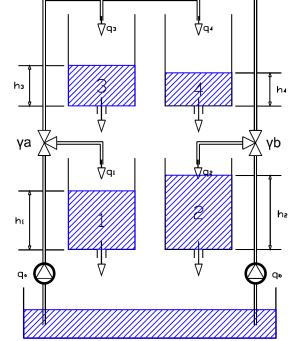
- \succ The system is nonlinear.
- > The system is time-invariant.
- > Order: 1 (only one state)
- > SISO system: only one input and one output
- Strictly proper: the output transformation does not depend on u(t)

Example 2:4 water tanks

$$\begin{aligned} h_1(t+1) &= h_1(t) - \frac{\Delta t}{S} (a_1 \sqrt{2gh_1(t)} + a_3 \sqrt{2gh_3(t)} + \gamma_a q_a(t)) \\ h_2(t+1) &= h_2(t) - \frac{\Delta t}{S} (a_2 \sqrt{2gh_2(t)} + a_4 \sqrt{2gh_4(t)} + \gamma_b q_b(t)) \\ h_3(t+1) &= h_3(t) - \frac{\Delta t}{S} (a_3 \sqrt{2gh_3(t)} + (1-\gamma_b)q_b(t)) \\ h_4(t+1) &= h_4(t) - \frac{\Delta t}{S} (a_4 \sqrt{2gh_4(t)} + (1-\gamma_a)q_a(t)) \end{aligned}$$

- > The system is nonlinear.
- The system is time-invariant.
- > Order: 4
- MIMO system: 2 input and 2 output
- Strictly proper: the output transformation does not depend on u(t)





Example 3: SIR with vaccination

$$S(t+1) = S(t) - \frac{\beta S(t)I(t)}{N} - v(t)S(t)$$

$$I(t+1) = I(t) + \frac{\beta S(t)I(t)}{N} - \gamma I(t)$$

$$R(t+1) = R(t) + \gamma I(t) + v(t)S(t)$$

$$y(t) = aI(t) + b(S(t) + R(t))$$

$$\mathbf{x}(t) = \begin{bmatrix} S(t) \\ I(t) \\ R(t) \end{bmatrix}, \quad u(t) = v(t),$$

- > The system is nonlinear.
- > The system is time-invariant.
- > Order: 3
- SISO system: only one input and one output
- Strictly proper: the output transformation does not depend on u(t)

Example 4: bg-insuline model

$$x_1(t) \quad \frac{dG(t)}{dt} = \theta_0 - \theta_1 \frac{G(t)}{G(t)} - \theta_2 Q_i(t) + \theta_3 Q_g(t)$$

$$x_2(t) \quad \frac{dQ_i(t)}{dt} = -\frac{1}{\theta_4}Q_i(t) + \frac{1}{\theta_4}Q_{i_{sub}}(t)$$

$$\frac{dQ_{i_{sub}}(t)}{dt} = -\frac{1}{\theta_4}Q_{i_{sub}}(t) + \frac{1}{\theta_4}u(t)$$

$$\frac{dQ_g(t)}{dt} = -\frac{1}{\theta_5}Q_g(t) + \frac{1}{\theta_5}Q_{sto}(t)$$

$$\frac{dQ_{sto}(t)}{dt} = -\frac{1}{\theta_5}Q_{sto}(t) + \frac{1}{\theta_5}r(t)$$

> The system is linear.

- The system is time invariant.
- Order: 5
- MISO system: 2 inputs and 1 output
- Strictly Proper: the output transformation does not depend on u(t)

y(t) = G(t)

u(t) = insuline infusion (controllable input)

r(t) = meals (non - controllable input, disturbance)

Dipartimento
 di Ingegneria Gestionale,
 dell'Informazione e della Produzione

Example 5

$$\begin{aligned} x_1(t+1) &= 2x_2(t) - u(t) \\ x_2(t+1) &= x_1(t) \\ y(t) &= x_1(t) + t \cdot u(t) \end{aligned}$$

- \succ The system is linear.
- The system is time variant.
- Order: 2
- SISO system: only one input and one output
- Proper: the output transformation depends on u(t)

State variables

The number of states variables n determines the complexity of the system.
A more complex system can model the same phenomena more accurately.

>With a fixed complexity the order of the system is uniquely determined.

- There are different choices of the state variables that define the same inputoutput relation, even if the order is always the same.
- ➤The minimum number of states is called **minimal representation**, and equals the number of differential (difference) equations describing the phenomenon.
- Sometimes the context provides criteria (physic, for example) for the selection of the state variables.

UNIVERSITÀ DEGLI STUDI DI BERGAMO

| Dipartimento | di Ingegneria Gestionale, | dell'Informazione e della Produzion