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Contact details: 

• antonio.ferramosca@unibg.it 

• http://www.antonioferramosca.com/

Research topics: Model Predictive Control (MPC), Economic MPC, Artificial Pancreas
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Name: Antonio Ferramosca

Who I am

• http://cal.unibg.it/ CAL research laboratory

• @ControlAutomationLabUnibg 

1. Dynamic system identification (6 cfu) 

2. Advanced Multivariable Control (6 cfu)

3. Data analysis lab (Technological and Management lab) (3 cfu)

Teaching:

Studies: Ph.D. Engineering (Control Systems) at University of Seville (Spain). Master 
Degree Computer Science Engineering at University of Pavia
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Course content

Part I: Dynamical systems

1. Foundations of dynamical systems

1.1 Movements 

1.2 Equilibria 

1.3 Stability

1.4 Continuous time VS Discrete time

2. Transforms

2.1 Discrete Fourier Transform

2.2 Z-transform and transfer function

3. Nonnegative systems

3.1 Compartmental systems

4. Typical biological systems

4.1 Epidemiological systems

4.2 Pharmacokinetics models

4.3. Blood Glucose – Insuline model

4.4 Anesthesia model

5. Identification

5.1 Output-error technique

5.2 Validation

6. Control

6.1 Classic control strategies

Part II: Biological systems
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Evaluation
• Written exam – 2 hours

• Theoretical open questions (most likley 2) and exercises (most likely 3)

• Materials: https://cal.unibg.it/courses/control-biological-systems/

(Link to the MS Team of the course in there).

Thesis opportunities
• Artificial pancreas control and fault diagnosis, anesthesia control

• Control and data science activities, see the webpage https://cal.unibg.it/theses/

Pre-requirements (strongly suggested)
• Calculus 1

• Fundamentals of linear algebra

• Fundamentals of statistics

Pre-requirements (optional)
• Control and automation

• Calculus 2

https://cal.unibg.it/courses/dynamic-system-identification/
https://cal.unibg.it/theses/
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3. Dynamical systems

4. Biological systems

Outline

5



/49

1. Introduction

2. Static systems

3. Dynamical systems

4. Biological systems

Outline

6



/497

Introduction
In this course we will talk about mathematical models for describing natural phenomena

or systems

System: abstract mechanism that transforms inputs (causes) to outputs (effects)

𝑆
Input Output

Model: mathematical description of a system

• Find a relationship expressed via a mathematical formula for relating the inputs to the

outputs, e.g. 𝑉 = 𝑅 ⋅ 𝐼 (Ohm’s law) or 𝐹 = 𝑚 ⋅ 𝑎 (Newtons’ 2nd law of dynamics)

𝑀
Input Output
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Introduction
We want a model that is a good enough representation of the real system (for our

purposes)

One way to assess the goodness of a model is to:

1. Perform an experiment on the system. Measure its inputs and outputs

2. Run the model and get its output, given the measured input

3. Compare the real measured output with the model output

To construct a good model for a certain system, we need to have some knowledge on the

system (process) we want to model.
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Introduction

𝑆
Input Real Output

𝑀
Simulated 
Output

+

−

Modeling error

If the real (measured) and simulated (by the model) outputs are similar, then the model is

able to replicate the real phenomenon. But why we need models?

We want this to be small
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A fundamental problem in the sciences is to adequately interpret a phenomenon starting

from its experimental observation

Introduction

As an example, the birth of modern

science corresponds to the discovery of

the universal law of gravitation, which

presents in an abstract form the

results of a number of experimental

observations about the motion of

celestial objects

SUN
mass 𝑀

EARTH
mass 𝑚

Force 𝐹!

Force 𝐹"

Distance 𝑟

𝐹' = 𝐹( = 𝐺 ⋅
𝑀 ⋅ 𝑚
𝑟(

“Mathematics is the alphabet with which God has written the Universe” - Galileo
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From the second half of the nineteenth century the process of «mathematicalization»

of the knowledge expanded to engineering disciplines (electronics, aeronautics,

mechanics, bioengineering,…)

Introduction

However, in passing from the world of classical physics to these new fields of application,

the phenomena examined became so complex that no simple and universal

"fundamental laws", such as that of gravity, can be defined

Engineers work with uncertain and approximate models, due to the fact that it is not

possible to describe mathematically all the natural phenomena, the value of some

parameter is not known accurately, and experiments have noise in the measurements
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Thus, a new discipline was born to learn (estimate) models directly from experimental

data, without relying on fundamental laws of the physics

Introduction

The applicative contexts of those learning methods are manifold:

• modeling of physical components: electric circuit, electro-mechanical actuators,

heat exchangers,…

• modeling of economics phenomena: forecasting the sells of a product due to an

advertising campaign, study of economic cycles or seasonalities,…

• modeling of biological phenomena: cardiovascular system, endocrine system,

respiratory system…
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All in all, we need a model to better understand the phenomena that are of our interest.

Models are useful for:

• Simulation: we can simulate, with a computer, the response (output) of a model due to

certain inputs. By looking at the model response, we understand the behavior of the

modeled system

Introduction
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All in all, we need a model to better understand the phenomena that are of our interest.

Models are useful for:

• Simulation: we can simulate, with a computer, the response (output) of a model due to

certain inputs. By looking at the model response, we understand the behavior of the

modeled system

Introduction

• Control: in control engineering (Automatica course) a model is used to design a

controller, i.e. a software that automatically defines the system input to obtain a

certain reference output
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All in all, we need a model to better understand the phenomena that are of our interest.

Models are useful for:

Introduction

• Decision making: suppose that we are testing a new vaccine. We have two groups of

people. We give the vaccine to the first group (test group) and a placebo to the second

one (control group). We then measure some variables from patients. How can we

choose if the vaccine was effective or not?

• Communication: a model allows to communicate to third parties the main

information and results of your analysis (do you remember March/April 2020?)
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Learning models from data is the aim of the discipline called statistical learning

Introduction

Depending on the scientific fields and modeling aims, different names were established

for basically the same purpose:

• Machine learning: “machine learning” is the application of statistical learning tools

for learning static models (i.e. the data do not depend on the time)

• System identification: the application of statistical learning tools for learning

(identify) dynamical models (i.e. the data that depend on the time)
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Statistical learning refers to a vast set of tools for understanding data. These methods 

can be broadly classified as:

Learning of static and dynamical systems

• Supervised learning: predicting an output based on one or more inputs

• Unsupervised learning: there is no output! The aim is to discover structures and 

relationships in the inputs

𝝋 𝑦
Input Output

Supervised learning learns 𝝋 → 𝑦, 

an input to output mapping
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Learning of static and dynamical systems

The aim of supervised learning (for both static and 

dynamical systems) is to estimate (learn) a function 

𝑓 𝝋 , that maps inputs 𝝋 to outputs 𝑦, so that 𝑦 = 𝑓 𝝋

𝑓 𝝋
𝝋 𝑦

Input Output

The input is represented as a vector 𝝋 = 𝜑!	 𝜑" 	⋯	 𝜑#$" ∈ ℝ#×", called features or

regressors vector. Each element 𝜑!	 𝜑" 	⋯	 𝜑#$" is called a feature or regressor

The output 𝑦 can be

• a number (continuous output), so that 𝑦 ∈ ℝ. We talk of a regression problem

• a category (discrete output), so that 𝑦 ∈ "Cat.	1", "Cat.	2", … "Cat. 𝐶" . We talk of a 

classification problem
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Learning of static and dynamical systems
In order to learn 𝑓 ⋅ from data, we have at disposal a dataset 𝒟 = 𝝋 𝑖 , 𝑦 𝑖 &'"	

)  

composed by 𝑁 observations of the quantities 𝝋 and 𝑦

The 𝑖-th observation is the couple 𝝋 𝑖 , 𝑦 𝑖 , where 𝑖 = 1,… ,𝑁

𝑓 𝝋 𝑖
𝝋 𝑖 𝑦 𝑖

Input Output

Our model should estimate the output 𝑦 𝑖 that corresponds to the input vector 𝝋 𝑖
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Suppose we want to predict the price of the houses in Boston based on their area

We want to learn the relation 𝑦 = 𝑓 𝜑  between:

• 𝜑: house size (feature or regressor)

• 𝑦: house price (output)

Given the data points 
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Example: house prices regression
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Example: house prices regression

House 
area(feet!) Price (1000$)

523 115
645 150
708 210
1034 280
2290 355
2545 440

Learn the relation from House area to Price𝜑 ∈ ℝ 𝑦

# bedrooms

1
1
2
3
4
4

𝝋 ∈ ℝ4×6 𝑦 Learn the relation from House area AND
#bedrooms to Price

• AIM: predict house prices

Regression

Suppose we have two regressors, so that 𝝋 = 𝜑", 𝜑*	 + ∈ ℝ*×"

• The output 𝑦 is continuous
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Example: house prices regression
Suppose we have four regressors, so that 𝝋 = 𝜑", 𝜑*, 𝜑,, 𝜑- + ∈ ℝ-×"

The 𝑖-th observation is the vector 𝝋 𝑖 = 𝜑" 𝑖 	 𝜑*(𝑖)	 𝜑,(𝑖)	 𝜑-(𝑖) + ∈ ℝ-."

Each feature vector 𝝋 𝑖 has associated a response 𝑦 𝑖 ∈ ℝ

N
u

m
b
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 o

f 
ob

se
rv

at
io

n
s 
𝑁

Output 
variable 𝑦

Single observation
(feature vector) 𝝋

Single feature 𝜑"

𝜑! 𝜑" 𝜑# 𝜑$
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Example: image classification

• AIM:  develop an application that recognize cats 

in images

Image Output label

Cat

Not cat

Cat

Not cat

• Learn the map from an image to a “membership 

class”

Classification

• The output 𝑦 is a category (Cat or Not cat)
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True label

Predicted covid label
Predicted healthy labelExample: image classification
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Example: house prices classification

The features are the same, but the output is now a category and not a real value (it is

always represented as number in the computer, but it is not treated as such by algorithms)

Suppose that instead of the price value in dollars, we want to classify houses as 

expensive (class 𝑦 = 1) or cheap (class 𝑦 = 0)

𝜑! 𝜑" 𝜑# 𝜑$
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Static systems
A system is said to be static if its output does not depend on some values of the output 

itself, i.e. if the features vector 𝝋 does not contain values of the output as regressors

In static systems, the values of an observation 𝝋 𝑖 , 𝑦 𝑖  does not depend on the values 

of another observation 𝝋 𝑗 , 𝑦 𝑗 , with 𝑗 ≠ 𝑖 . We say that the observations are 

independent 

It is also commonly assumed that observations have the same data distribution. This is 

very important for reliably learning and evaluating statistical learning models

These data are called Independent and Identically Distributed (i.i.d.)
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Dynamical systems
A system is said to be dynamical if its output depend on some values of the output itself, 

i.e. if the features vector 𝝋 contains values of the output as regressors

Dynamical systems usually involve the time: the output 𝑦 𝑡  at a certain time 𝑡 depends

on the output at previous times 𝑦 𝑡 − 1 , 𝑦 𝑡 − 2 ,…𝑦 𝑡 − 𝑚

Dynamical models are mathematical models that allow to describe the future evolution of

the variables involved as a function of their past trend and external variables

This dependence from the past endows the model with a «memory» (i.e. the dynamics), 

of past behaviour
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Dynamical systems
Most physical and natural systems are dynamical!

• In an electromechanical motor, the relation between the motor current and the

motor speed can be described by a dynamical model

• The force generated by a skeletal muscle contraction will depend by the viscous

damping given by the tissue and on the elastic storage properties by the tendons

• The regulation of the blood-glucose level done by the pancreas is dynamical

• The flow equation of the blood through the vessels depend on pressures dynamics
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Dynamical systems
Dynamical systems, due to the presence of the time variable, are used to model relations 

between input and output signals:

𝑆
Input signal Output signal

𝑢 𝑡 𝑦 𝑡

Two sets of 𝑁 data are collected, sampling 

the signals at 𝑡 = 1,2, …𝑁 time instants

• Input data 𝑢(1), 𝑢 2 , … , 𝑢 𝑁 }

• Output data 𝑦(1), 𝑦 2 , … , 𝑦 𝑁 }

The signals are not random! They 
show a temporal correlation
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Dynamical systems 𝑆
Input signal Output signal

𝑢 𝑡 𝑦 𝑡

Input (explicative variable) Output (explained variable)

Audio signal (before transmission) Audio signal (after transmission)

Current Motor torque

Medicine amount Hormone concentration

Mm of rain Concentration of pollution

Insuline infusion Blood-glucose level

Examples of input/output dynamical systems:
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Dynamical systems 𝑆
Input signal Output signal

𝑢 𝑡 𝑦 𝑡

T1 Diabetes patient model:

Output: Blood Glucose

Input:  Insulin delivery

CHO Intake

The BG 𝑦 𝑡  at a certain time 𝑡
depends on its values at 
previous times
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Dynamical systems
Dynamical systems can be defined in continuous-time or discrete-time

Natural and physical phenomena are inherently continuous

• In this case, the system is described through differential equations, like 

𝑑𝑦
𝑑𝑡

= �̇� 𝑡 = −2 ⋅ 𝑦 𝑡 + 3	 ⋅ 𝑢 𝑡

The derivative is the «mathematical representetation of the future behaviour 

of a function». This notion of «future» is exactly what we need to represent the 

memory of a continuous-time dynamical system
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Dynamical systems
However, the computer can only manage a finite amount of data. Thus, signals should 

be sampled with a sampling time 𝑇/, such that we store a finite amount of data at

discrete times 𝑡 ⋅ 𝑇/, with 𝑡 = 1,… ,𝑁

𝑦 𝑡 = 𝑦 𝑡 ⋅ 𝑇8

In the following, we will use 𝑦 𝑡 with

the meaning of 𝑦 𝑡 ⋅ 𝑇/
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Dynamical systems
The evolution of discrete-time signals (sampled from continuous-time ones) can be 

described by discrete-time systems:

• instead of a differential equation, we have a difference equation

𝑦 𝑡 = −0.5 ⋅ 𝑦 𝑡 − 1 + 3	 ⋅ 𝑢 𝑡

With the difference equation, it is very clear that 𝑦 𝑡  depends on its previous values 

(and also on the input 𝑢 𝑡 )
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Dynamical systems
For the purpose of learning dynamical systems, we will cast the learning problem just 

like for static systems

𝑓 𝝋 𝑡
𝝋 𝑡 𝑦 𝑡

Input Output

The only difference is how the regressors vector 𝝋 will be defined. Since the output

depends on the input and output signals 𝑢 𝑡 and 𝑦 𝑡 , the regressors vector 𝝋 𝑡 at

certain time 𝑡 will look like:

𝝋 𝑡 = 𝑦 𝑡 − 1 ⋯𝑦 𝑡 −𝑚 	 𝑢 𝑡 	⋯𝑢 𝑡 − 𝑝 +
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Dynamical systems

Static systems

𝑓 𝝋 𝑡
𝝋 𝑡 𝑦 𝑡

Input Output
𝑓 𝝋 𝑖

𝝋 𝑖 𝑦 𝑖
Input Output

Dynamical systems

• With static systems, we will index the observations with the index 𝑖

• With dynamical systems, we will index the observations with the index 𝑡

In either cases, both model will be to learn 𝑓 ⋅ from data

• In the dynamical case, we will talk of «identification». It is a synonym of «learn»
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Biological systems modelling
The aim of this course will be to derive mathematical model to describe in a 

qualitative and quantitative way  certain phisiological/bio processes.

This modelling help to better understand a certain phenomenon and to give a formal 

description of it.

Models also help to design specific experiments to better characterize a certain 

phenomenon.

Biological model can help to understand the behaviour of certain phisical quantities 

that cannot be directly measured, (ex: insuline time evolution).
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Biological systems modelling

Models can be simulation tools to study, for example, the effects on variables of

interest, of changes in external signals and/or parts of the model (e.g. to distinguish

physiological situations from pathological ones)

They can be used as diagnostic tools to distinguish different pathologies, different

severities of the same pathology or between healthy subjects and subjects suffering

from pathologies

Biological models are also particularly useful to determine a correct therapeutic

protocol (administration schedule, dosages, etc.)
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Biological systems modelling

To model a certain biological process the first thing to do is to define the purpose

and objectives of the model itself.

There is no "universal" model of a system that is valid in every context. On the

contrary, according to a famous phrase that sums up the "belief" of all modelers, all

models are wrong, some are useful.

Therefore, the problem in general is not to define the correct model of a system, but

the most useful model for the intended purpose.
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Example: functional electrical stimulation
Purpose: Rehabilitation of paraplegic subjects

Control 
action Controlled 

variable

Actuator Sensor

Controller

A dynamical model of the muscles 

response to electrical stimulations is 

estimated to design the control algorithm
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Example: artificial pancreas
Purpose: semi-automatic insulin regulation

A dynamical model of the patients 

response to insulin is estimated to design 

the control algorithm
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Example: artificial pancreas
Model Identification (child): training vs validation in a 7 days test

First 3 days used as training set

Last 4 days used for validation
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Example: artificial pancreas
Model Identification (adult): training vs validation in a 5 days test

First 3 days used as training set

Last 2 days used for validation



Example: artificial pancreas

From the control point of view, the process to be controlled is the patient. 
The model helps to design a specific control algorithm (therapy) for the patient.

Target glycemia Insuline Glycemia

𝑦%(𝑡) 𝑢(𝑡) 𝑦(𝑡)

Glycemia measures

Control 
algorithm

(PID, MPC, Fuzzy 
logic)

Meals

𝑟(𝑡)

47/49
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Course content

Part I: Dynamical systems

1. Foundations of dynamical systems

1.1 Movements 
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