
Compressione e ottimizzazione di reti neurali ricorrenti tramite matrici strutturate 
additive (Doping) in System Identification 

L'impiego di reti neurali ricorrenti (RNN) nell'identificazione di sistemi dinamici1, come le 
Long Short-Term Memory (LSTM)2 o le Gated Recurrent Unit (GRU)3, ha dimostrato capacità 
modellistiche eccellenti grazie ai loro meccanismi di memoria interna. Tuttavia, l'elevato 
numero di parametri di queste architetture rappresenta un limite critico per l'implementazione 
su sistemi embedded o dispositivi con risorse computazionali limitate. 

Per ridurre l’impatto computazionale e di memoria senza sacrificare l'accuratezza, sono 
state proposte varie tecniche di compressione. Tra queste, l'utilizzo di matrici strutturate (es. 
prodotti di Kronecker) permette di ridurre drasticamente il numero di parametri, ma spesso a 
scapito della precisione del modello, specialmente in sistemi complessi dove la struttura 
rigida imposta non riesce a catturare tutte le non-linearità. 

Una recente proposta di Thakker et al.4 introduce la tecnica del Doping: l'aggiunta di una 
matrice estremamente sparsa a una matrice strutturata (come quella derivata da un prodotto 
di Kronecker). Questo approccio permette ai parametri di "divergere" indipendentemente 
dalla struttura fissa solo dove necessario, recuperando l'accuratezza persa durante la 
compressione con un costo computazionale aggiuntivo trascurabile. 

 

Figura daThakker et al., 2021, "Doping: A technique for Extreme Compression of LSTM Models using Sparse Structured 
Additive Matrices". La matrice dei pesi W è decomposta nella somma di una matrice strutturata (prodotto di Kronecker tra B e 
C) e una matrice sparsa Ws che introduce gradi di libertà aggiuntivi. 

 

4 Thakker et al., 2021, "Doping: A technique for Extreme Compression of LSTM Models using Sparse 
Structured Additive Matrices" 

3 Cho et al., 2014, “Learning Phrase Representations using RNN Encoder–Decoder for Statistical 
Machine Translation” 

2 Hochreiter and Schmidhuber, 1997, “Long Short-Term Memory” 
1 Ljung et al., 2020, “Deep Learning and System Identification” 
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Un aspetto critico nell'addestramento di queste reti "doped" è la co-matrix adaptation (CMA), 
ovvero la tendenza del modello ad affidarsi eccessivamente alla matrice sparsa durante le 
prime fasi del training. Per ovviare a questo problema, Thakker propone uno schema di 
regolarizzazione chiamato Co-Matrix Dropout (CMR), che disaccoppia l'apprendimento delle 
due matrici. 

Nel contesto della System Identification l'applicazione di questa tecnica risulta 
particolarmente promettente per ottenere modelli leggeri ma accurati. Inoltre, un'estensione 
naturale di questo lavoro riguarda l'integrazione di tali strutture nei framework di stabilità 
formale (es. Input-to-State Stability)5, per garantire che la compressione non comprometta la 
convergenza del sistema identificato. 

Obiettivo della tesi 

Questa tesi si pone come obiettivo l'applicazione e la valutazione della metodologia di 
compressione e doping proposta da Thakker et al.6 per l'identificazione di sistemi dinamici 
non lineari. Gli obiettivi chiave sono: 

1.​ Implementazione del framework di Doping: Sviluppare un’architettura gated RNN, 
preferibilmente GRU, basate sulla scomposizione additiva strutturata con gli algoritmi 
di addestramento specifici (Co-Matrix Dropout e annealing della sparsità). 

2.​ Valutazione delle prestazioni: Confrontare i modelli "doped" rispetto a modelli densi 
standard e a modelli puramente strutturati, analizzando il trade-off tra fattore di 
compressione, accuratezza della predizione e tempi di inferenza. 

3.​ Analisi della stabilità (Obiettivo opzionale): Indagare come la scomposizione 
strutturata influenzi le proprietà di stabilità (Input-to-State Stability e incremental 
Input-to-State Stability) della rete, valutando se la natura del Doping possa facilitare 
l'imposizione di vincoli di stabilità durante il training. 

Note implementative: 

●​ L'implementazione sarà realizzata principalmente in MATLAB, sfruttando i tool di 
Deep Learning per la creazione di layer personalizzati. 

●​ I modelli verranno validati su dataset di benchmark pubblici (i.e. NISB) per la System 
Identification (es. Silverbox, Wiener-Hammerstein, …), eventualmente integrati con 
simulazioni. 

La tesi può essere svolta singolarmente o in coppia. 

6 Thakker et al., 2021, "Doping: A technique for Extreme Compression of LSTM Models using Sparse 
Structured Additive Matrices" 

5 De Carli et al., 2025, "Infinity-norm-based Input-to-State-Stable Long Short-Term Memory networks: 
a thermal systems perspective" 
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