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Fault Detection via modified Principal Direction Divisive Partitioning
and application to aerospace electro-mechanical actuators

Mirko Mazzoleni, Simone Formentin, Fabio Previdi and Sergio M. Savaresi

Abstract—1In this paper, the use of the Principal Direction
Divisive Partitioning (PDDP) method for unsupervised learning
is discussed and analyzed with a focus on fault detection
applications. Specifically, a geometric limit of the standard
algorithm is highlighted by means of a simulation example
and a modified version of PDDP is introduced. Such a method
is shown to correcly perform data clustering also when the
standard algorithm fails. The modified strategy is based on the
use of a Chi-squared statistical test and offers more guarantees
in terms of detection of a wrong functioning of the system.
The proposed algorithm is finally experimentally tested on
a fault detection application for aerospace electro-mechanical
actuators, for which a comparison with k-means and fuzzy k-
means approaches is also provided.

I. INTRODUCTION

Fault Detection and Isolation (FDI) methods aim at mon-
itoring a system, identifying when a fault has occurred, and
pinpointing the type and the location of the fault.

FDI approaches can be broadly divided in two classes:
model-based and model-free approaches [1]. The former set
of methods relies on a mathematical model of the system
under consideration, and the detection of the fault is mainly
based on the mismatch between the measurements and the
state of the system estimated using the model information.
Instead, model-free methods do not require the direct esti-
mation of a model of a plant, since the faults are detected
mainly based on the comparison of current measurements
with processed past data. In this context, pattern-recognition
techniques [2] showed to be very useful to derive the required
information from data without the need of parameterizing
any model.

In machine learning, pattern recognition is concerned with
the classification of objects (patterns) into a number of
categories or classes. In order to built such classes, after
collecting raw data and measurements - which are typically
highly redundant - feature extraction is performed to isolate
and use only the significant information. This step is very
critical because it is representative of an important trade-
off between the information which is thrown away, the
computational tractability and the ability to generalize to
other datasets of the resulting classes [3]. A review of pattern
recognition techniques for fault detection is given in [4],
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whereas a panoramic view of features and classifiers for fault
diagnosis is employed in [5].

The Principal Direction Divisive Partitioning (PDDP) [6]
is among the most popular methods for pattern recogni-
tion. It was originally proposed to solve a text document
classification, and various research activities have worked
towards improvements in this direction, see, e.g., [7], [8], [9].
The PDDP approach seems very suited for FDI for several
reasons. First of all, its computational cost is roughly linear
in the number of non-zeros in the feature matrix and only
weakly (logarithmic) scaled with the number of generated
clusters. Therefore, despite of its simplicity, it has been
proven to produce high quality clusters, especially when
the dimensionality of the data is high [8]. This is possible
by stopping the singular value decomposition (SVD) at the
first singular value/vector and makes PDDP significantly
less computationally demanding than other widely known
methods like, e.g., Latent Semantic Indexing algorithm (LST)
[10], especially if the data-matrix is sparse and the principal
singular vector is calculated by resorting to the Lanczos
technique [11], [12].

In this paper, it will be shown that FDI using the standard
PDDP approach may yield some problems. More specifically,
it will be illustrated by means of a motivating simulation
example that PDDP may intrinsically split the data along the
first principal component even when two clusters are slender
and narrow and their length is greater than the distance
between their centroids. This fact constitutes a great limit, as
it may significantly jeopardize the quality of clustering. To
overcome this problem, as a first contribution of the paper,
a modified version of PDDP - called mPDDP - is proposed,
in which the choice of the cluster to split is based on Chi-
squared goodness of the data fitting.

It should also be said that many other variations of the
original PDDP algorithm have been proposed to enhance
its performance. In [13] the authors developed a non-greedy
variant of the algorithm, which tries all the possible choices
of partition on a specified number of clusters and principal
components, by evaluating the variance within the cluster.
The choice of the number of clusters, if not specified a priori,
is discussed in [14] with the use of a BIC criterion. The
works in [15], [16] focus instead on the choice of which
cluster to split. However, as far as the authors are aware,
none of the above variations of the PDDP has directly dealt
with the problem object of this paper.

As a second contribution of this paper, the mPDDP
algorithm is experimentally applied on FDI of a real Electro-
Mechanical Actuator (EMA) for aerospace applications. The
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constraints of a lightweight, online and reconfigurable
algorithm has dictated the choice of an unsupervised
algorithm like the PDDP. Real data will be processed
with standard and modified PDDP to further motivate the
proposed study on a real-world application and to show
the potential of the developed method. The considered
major EMA failure modes for fault detection have been first
identified in [17].

The remainder of the paper is as follows. In Section II,
the standard PDDP method is briefly recalled. The proposed
modification of the clustering method is illustrated in Section
III, where a simulation example is used to show the limits
of the standard approach and visually explain the main idea
behind the new algorithm. The modified PDDP is then ap-
plied on a real EMA setup for aerospace application, where a
significant increase in clustering performance is highlighted.
The paper is ended by some concluding remarks.

II. PRINCIPAL DIRECTION DIVISIVE
PARTITIONING

The task of unsupervised learning is to reveal the organi-
zation of patterns into “sensible” clusters (groups). Similar
patterns, in the sense of a defined similarity measure, will
be grouped into the same cluster by a clustering algorithm.

Many clustering algorithms have been proposed through-
out the years. The oldest ones are based on the Basic Sequen-
tial Algorithmic Scheme (BSAS), where each new point is
said to belong to a group of points, depending on its distance
from the existing clusters. Then, several other categories
of methods have been proposed: optimization-based, among
which the celebrated k-means algorithm [18]; density-based,
e.g. the Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) [19] and hierarchical clustering, like
Principal Direction Divisive Partitioning (PDDP) [6].

PDDP belongs to another important class of data-
processing techniques, that is SVD-based (Singular Value
Decomposition) methods, in which the Latent Semantic
Indexing algorithm (LSI) [10], and the LSI-related Linear
Least Square Fit (LLSF) algorithm [20] are also included.
The considered clustering approach is bisecting divisive
clustering: the problem to be solved is the splitting of the
data matrix X = [x1,x2,...,xy] € R™N (where m is the
dimensionality and N is the number of data) into two sub-
matrices (or sub-clusters) X; € R”™M and Xz € R™ M,
Ny +Ng=N.

PDDP is mainly based on Principal Components Analysis
(PCA), thus involving the eigenvector decomposition of the
data covariance matrix, or equivalently a singular value de-
composition (SVD) of the data matrix after mean centering.
The principal trend in data can be considered in two ways. In
PCA, the direction of principal trend is taken as the direction
in which the variance (or “spread") of the data is maximum.
The second way to define the principal trend is by means
of least squares, in which case the trend is along a line L
for which the total sum of squares of orthogonal deviations
from L is minimal among all lines in R™.

The PDDP algorithm is very popular, mainly for its low
computation requirements. As a matter of fact, PDDP has a
computational cost roughly linear in the number of non-zeros
in the feature matrix and it is characterized by a weak scaling,
which is logarithmic with the number of generated clusters.
Moreover, it provides a “one-shot” deterministic solution,
unlike the initialization-dependent solution given, e.g., by the
k-means. For the interested reader, a thorough comparative
analysis of bisecting k-means and PDDP is given in [21].

The PDDP algorithm can be formalized as follows.

PDDP clustering algorithm

1) Compute the centroid w of X, where w a m x 1 vector
2) Compute the auxiliary matrix X as X =X —w-e,
where e is a N-dimensional row vector of ones, namely

[1,1,...,1]

3) Compute the Singular Value Decompositions (SVD) of
X, X =UxVT, where X is a diagonal m x N matrix,
and U and V are orthonormal unitary square matrices
having dimension m x m and N x N, respectively

4) Take the first column vector of U, u = Uy, and divide
X = [x1,x2,...xn], into two sub-clusters X; and Xg,
according to the following rule:

xieXy ul (xi—w) <0
x; € Xgr MT(X,'—W) >0

e =

)]

5) iterate until the desired number of clusters is reached.

ITI. MODIFIED PDDP BASED ON STATISTICAL
DATA TEST

In this section, a limit of the PDDP algorithm in some
practical situations is highlighted. Precisely, it will be shown
that the splitting along the first principal component is not
always the best choice when two clusters are slender and
narrow, and their length is greater than the distance between
their centroids. To overcome this problem, a modified version
of the PDDP method is proposed. In what follows, first the
Chi-squared test will be briefly outlined, then the modified
version of PDDP method will be described and illustrated
by means of a simulation example.

A. Chi-squared goodness of fit test

The chi-squared goodnees of fit test performs a statistical
test to assess whether the data is drawn from a Gaussian
probability density function (pdf). The situations are then
two: either the data was drawn from a normal distribution
(assumption Hp) or from another distribution (assumption
H)).

Given an histogram, the question is whether it is consistent
with a given pdf. If the histogram has k bins, let by, by, ..., by
be the k+ 1 boundaries. So, x belongs to the i-th bin if
bi_1 < x < b;, i=1...k. The counts for the i-th bin is
defined as o;. Since there could be many experiments, o; is a
particular outcome of the random variable O;. The expected
counts ¢; are computed from the distribution with parameters
estimated on the data. To measure the discrepancy between
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the observed histogram o; and the histogram e; computed
under the null hypothesis, it is then natural to use

k 2
2 (0i —ei)
1= Z AR 2)
i=1 ¢i
Since the observed bin values o; are outcomes of the random
variables O;, the value 72 is itself an outcome of the random

variable
(0i—ei)?
1 ¢i

X =

-

) 3

which is distributed according to a chi-square probability
density function with d = k — 1 degrees of freedom, Py (%),

because of the constraint Y* | 0; = n.

The p-value is defined as the probability of obtaining a
statistic test at least as extreme as the one that was actually
observed, assuming that the null hypothesis is true:

p=Plx*>7] = /72 Py2(x)dx 4

If p < o, hypothesis Hy is rejected at a significance level o
and the result is right with probability 1 — a.

B. mPDDP

To exemplify the problem, consider the case depicted
in Fig. 1. The projection on the first principal component,
according to the PDDP rule, splits the cluster in two groups:
the first cluster is composed by the top half of the blue and
the red cluster, while the second cluster is composed by the
bottom halves. Projecting on the second component, the two
resulting clusters are the blue one and the red one, as an
external observer would have suggested.

A -
A . 1st principal
i component

\

2nd principal
component

Projection pdf on the
1st component

Cluster 1
® Cluster 2

/\ \ /\ Projection pdf
on the 2nd component

Dataset projection on the first two principal components

Fig. 1.

Consider now the simulation example illustrated in Fig. 2.
The first and the second big clusters are recognized by the
PDDP algorithm and the cluster selected for further splitting
is chosen to be the top one. However, at the second step of
the algorithm, the red cluster is split into the green and red
groups, which is obviously the uncorrect choice.

To address this problem, it should first be noted that the
distributions of the data projected on the first component (see
again Fig. 1) are significantly overlapped. Moreover, the sum
of the two distributions approximates the normal distribution

Cluster 1
104 O Cluster 2
Cluster 3

Feature 2
&
o

|
@
S

—40t

=501

_60 . . . . . . .
-50 -40 -30 -20 -10 0 10 20
Feature 1

Fig. 2. Clustering produced by the standard algorithm at the second step

better than the sum of the distributions of the projections on
the second principal component.

The idea is then to adopt the statistical hypothesis test of
the previous subsection to prove if the data really follow a
normal distribution. By relying on the previous arguments,
the data have to be projected on the direction for which their
distribution is less similar to a Gaussian.

Then, a statistical goodness of fit test can be performed
on the data projected on each direction. The direction which
has generated the data for which the hypothesis test gives
the smallest p-value, i.e. for which the null hypothesis (the
Gaussianity of the data) is rejected, is chosen as the direction
where to apply the PDDP. Notice how the choice of the
« level is irrelevant to our analysis, since we rely only
on the p-value, regardless of the fact that the test has
confirmed or not the null hypotesis. The number L of
principal direction to be evaluated is a trade-off between
computational complexity and performance. In this ap-
plication, the choice of L is made once at the beginning,
but it can also vary at every step. Investigations about
this topic is still ongoing.

The first three steps of the so-built algorithm are then
equal to the old ones, whereas the others need to be
reformulated. The overall procedure looks as follows.

mPDDP clustering algorithm

1) Compute the centroid w of X, where w is a m x 1 vector

2) Compute the auxiliary matrix X as X = X —w-e,
where e is a N-dimensional row vector of ones, namely
e = [1,1,...,1]

3) Compute the Singular Value Decompositions (SVD) of
X, X =UxVT, where ¥ is a diagonal m x N matrix,
and U and V are orthonormal unitary square matrices
having dimension m x m and N x N, respectively

4) Choose the number L of principal components to eval-
uate, 1 < L < m. Take the first L columns of U,
[ur,uz,....,u], =1...L, and compute the data projec-
tions onto this principal directions, z; = u! (x — w).

5) Perform a chi-squared goodness of fit test on the z
vector of data projected, with a significance level o
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and compute the p-value p;, with [ =1...L

6) Find j = argmin p; to find the index of the test which
I=1..L
gave the lowest p-value.

7) Divide the data into two sub-clusters X; and Xg,
according to the following rule:

{xiEXL u]r(xi—W)SO )

x; € Xg ujr(xi—w) >0

8) iterate until the desired number of clusters is reached.
In Fig. 3, the new strategy is applied on the simulation
example. Notice that now, as expected, the cluster is split

according to the second principal component, unlike using
standard PDDP.

20
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10l O Cluster2
#  Cluster 3

Feature 2
&
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Fig. 3. Clustering produced by the modified algorithm at the second step

IV. APPLICATION TO AEROSPACE
ELECTRO-MECHANICAL ACTUATORS

Aerospace applications have very strict constraints on
weight and volume, which often penalize redundancy. How-
ever, for safety reasons, an actuator with no hardware re-
dundancy must be equipped with a sophisticated diagnostic,
prognostic, and recovery system (see [22] for a survey on
FDI approaches in aerospace applications). In this applica-
tion of the technique proposed in this work, the focus will
be on Electro-Mechanical Actuators (EMA).

In traditional actuation systems for aerospace, the aero-
dynamic surfaces are actuated by a series of ballscrews,
which are, in turn, actuated by a motor. Each ballscrew
moves on a rail, realizing the requested kinematic profile. A
break or structural failure of the servo motor can lead to an
uncontrolled movement of the aerodynamic surfaces, which
could be potentially catastrophic. Due to this reason, a couple
of actuators (Master and Slave), which are synchronous but
independents in term of motion generation and stop, are used
to prevent such situations.

The system under test in this work, illustrated in Fig. 4,
is composed by two five phases brushless motor (the Master
and Slave EMAs) with a ballscrew transmission, and by an
hydraulic cilinder aimed to generate a resistive load. The
faults to be detected are:

o One raceway clogged

Fig. 4. The experimental setup used in this work.

o Two raceways clogged
« worn ball bearings

The training data were collected for different types of input
position profiles, with the aim to excite the system in all
its components. The type of input profiles was chosen to
be a square wave-like signal, with different magnitude and
frequency of repetition. For each input, the data were col-
lected for every fault conditions, with a sampling frequency
of f; = 10kHz. The variables chosen for the analysis were
referred at the Master actuator, and they are:

1) Position set-point

2) Position measured

3) One phase current (phase A)

4) Torque-generating current

so, for each input profile, there are 4 variables and 3 fault
conditions, for a total of 12 variables/profile. For simplicity,
the load profiles were set to zero for each experiment.

Recent studies [23], [24] report that existing current
and position/speed sensors equipping aerospace EMA are a
promising tool for health monitoring of electromechanical
actuators based on screw systems. Therefore, features to be
used for FDI are computed based on the current signals from
the various fault types and profiles. To take into account the
needs for a real-time evaluation, and to make the statistical
indexes more reliable, each feature sample is computed via
an overlapping moving window, with length of 3s and slide
length of 1.5s.

For feature extraction, the motor state transition from one
fault to another is sometimes simulated as an abrupt change
and some others as a smooth transition.

In this application, up to 21 features have been computed,
spanning from time domain, frequency domain, and time-
frequency domain. Time domain features include general
purpose indexes, like Root Mean Square (RMS) value,
skewness, kurtosis, sixth central moment, shape and crest
factors, peak-to-valley value, energy operator [25], [26], [5],
and application specific indexes, like position error [17] and
the torque-speed ratio.

5773



Frequency domain features consist mainly of the mag-
nitude of the Fast Fourier Transform (FFT) over 3 sets of
frequencies. Three indexes of these type have been extracted,
based on the value of the magnitude at different frequency
bands. Other features are mean frequency, frequency center,
RMS and standard deviation in the frequency domain [5].

After the computation of the features, any point in the
feature space is ¢-dimesional, with = 21. In order to reduce
the computational time and to prevent possible causes of bad
generalization, feature selection is performed. Specifically,
the method of the Linear Discriminant Analysis (LDA),
which goes back to the pioneering work of Fisher [27], is
used. The LDA is a supervised method, which means that
the class which data belong is given to the algorithm; the
dimension reduction is achieved via a linear combinations
of the existing features, by seeking the direction w in the 7-
dimensional space, along which the classes are best separated
in some way. This can be done by maximizing the Fisher
Discriminant Ratio, which, for the two-classes case, it is
equal to:

((w) — Nz(W))Z

Fow) =5 W2+ 02 ()2’

being p; and pp the mean of the class one and two,
respectively, and with 612,(722 the variances of the class one
and two. These parameters are scalar values after the
projection along the direction w. Notice that F(w) is
large if the classes are well separated. The method can be
straightforwardly extended to be used in the multi-class case,
see [28].

The peculiarity of this technique is that it produces a
number of feature which is at most equals to the number of
classes minus one. So, in this case, since there are 3 classes,
after this step the feature space changes from 21-dimensional
to 2-dimensional, and the new features, which we can call
“Featurel” and “Feature2”, are linear combination of the
previous ones.

After the feature extraction and selection phases have
been performed, classification is needed. A point belongs
to the cluster at minimum Euclidean distance, computed
respectively to the cluster center. Here, it is possible
to compare the standard and modified PDDP algorithms.
Fig. 5 and Fig. 6 show the real bounds (solid) and the
boundaries found by the clustering algorithms (dashed). The
three considered faults are highlighted using three different
colors and the misclassified points are put in evidence with
surrounding circles. It can be noted that the boundaries found
by the new algorithm are closer to the true ones than the
stripes selected by the standard algorithm. This fact produces
a much better detection rate and a much smaller number of
misclassified points, as summarized in Table I. In a safety
critical application like this one, this result largely increases
the reliability of the overall system.

For the sake of completeness, also the performance of
the k-means [29] and the fuzzy k-means [30] algorithms are
evaluated. The results with such methods are shown in Fig.
7 and 8, whereas the main quality indeces are summarized

Feature 2
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-0.15f = Two raceways clogged| _|
v One raceway clogged
4 Cluster center

-0.2&

L L L L L L
-0.02 -0.01 0 0.01 0.02 0.03
Feature 1

Fig. 5. Performance of the standard PDDP algorithm, true boundaries (solid
lines), obtained boundaries (dotted lines), misclassified points (circled)

Feature 2

Wom ball bearing
v One raceway clogged | |
= Two raceways clogged|
4 Cluster center

-0.151

-02f

-0.02 -0.01 0 0.01 0.02 0.03
Feature 1

Fig. 6. Performance of the proposed mPDDP algorithm, true boundaries
(solid lines), obtained boundaries (dotted lines), misclassified points (cir-
cled).

in Table I. Notice that the proposed mPDDP algorithm
outperforms also this different clustering approach.

V. CONCLUSIONS

Model-free fault diagnosis and isolation (FDI) is an ap-
pealing tool to make a safety critical system reliable against
model uncertainties, since no models of the system are used
to estimate whether a fault has occurred or not. In particular,
model-free FDI using pattern recognition techniques shares
the advantages of feature selection and unsupervised learning
methods, that is, large datasets can be handled by smart
dimensionality reduction and no previous labeling (of the
faults) is needed. PDDP is among the most popular tech-
niques in this framework. However, in this work, it is shown
that PDDP may provide wrong results in case of particular
distribution of the data in the features space. Therefore,
a modified version of the PDDP algorithm is proposed,
called mPDDP, based on a Chi-squared statistical test. The
proposed method showed to be very effective when applied
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TABLE I
RESULTS OF CLASSIFICATION

Algorithm Misclassified | Detection rate
mPDDP 13/67 0.1940
PDDP 29/67 0.4328
k-means 30/67 0.4478
fuzzy k-means 27167 0.4030

Feature 2

-0.1f 1

v One raceway clogged

-0.15f + = Two raceways clogged |
Worn ball bearing

4 Cluster center

-0.2E L L L L L L |
-0.02 -0.01 0 0.01 0.02 0.03
Feature 1

Fig. 7. Performance of the k-means algorithm, true boundaries (solid lines),
obtained boundaries (dotted lines), misclassified points (circled).
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-0.151 ¥ One raceway clogged |
= Two raceways clogged
4 Cluster center

-02p 1 1 I 1

L L
-0.02 -0.01 0 0.01 0.02 0.03
Feature 1

Fig. 8. Performance of the fuzzy k-means algorithm, true boundaries (solid
lines), obtained boundaries (dotted lines), misclassified points (circled).

on experimental data taken from an aerospace EMA setup
(where suitable faults were simulated ad-hoc).

Future work will be dedicated to the theoretical analysis of
the proposed approach, and its integration within a standard-
ized FDI procedure. Moreover, different applications will be
addressed to better understand the potential of the proposed
approach with respect to other existing methods.
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