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Classification of light charged particles
via learning-based system identification

Mirko Mazzoleni, Matteo Scandella, Simone Formentin and Fabio Previdi

Abstract— This paper presents a nonparametric learning
approach for the automatic classification of particles produced
by the collision of a heavy ion beam on a target, by focusing on
the identification of isotopes of the most energic light charged
particles (LCP). In particular, it is shown that the measurement
of the particle collision can be traced back to the impulse
response of a linear dynamical system and, by employing recent
kernel-based approaches, a nonparametric model is found that
effectively trades off bias and variance of the model estimate.
Then, the smoothened signals can be employed to classify the
different types of particles. Experimental results show that the
proposed method outperforms the state of the art approaches.
All the experiments are carried out with the large detector array
CHIMERA (Charge Heavy Ions Mass and Energy Resolving
Array) in Catania, Italy.

I. INTRODUCTION

One of the most interesting goals of the intermediate
energy heavy ion research is to investigate the characteristics
of the nuclei under extreme conditions of density and
temperature [1]. In these types of physics’ experiments, the
standard approach is the measurement and analysis of the
collision effects of a heavy ion beam over a target. The
nuclear reactions induced by the nucleus-nucleus collision
produce a large number of fragments with different energy,
charge and mass values. This multifragmentation is predicted
to be the major decay mode produced for a nuclear system
at high density and temperature [5]. Thus, a complete
experimental investigation, that should identify almost all
the produced fragments, needs to ground on a suitable
experimental device able to capture the particles that move
away from the collision point in all directions. These devices
present specific detector cells that generate an electrical
signal when hit by a particle. The availability of these
detectors, however, does not automate the classification of
the detected particles’ fragments. Infact, this task is often
performed manually by visual inspection of the measured
electrical quantities. An efficient automatic algorithm is
therefore strongly advised.

One of the first attempts to develop a fully automated
algorithm for isotopic classification of the most energetic
light charged particles (LCP) has been presented in [12].
Here, the authors tackled the problem from a system
identification point of view, identifying the dynamical system
that generated the measurements. In this paper, we extend
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previous research by employing kernel methods for system
identification, following the advice given in [7] (based on
the separation/invariance principle) to always first model as
well as possible. A model reduction step is then performed
by means of a numerical algorithm for subspace state space
system identification (N4SID) method [8].

Kernel methods are nonparametric learning techniques
that very recently undergone a large interest from the
system identification community [9], [10], [11]. They are
based on the definition of a kernel function k : 2 x Q@ — R,
with © a generic set where the input regressors belong,
that embodies the properties of the functional space in
which the desired function has to be searched. The main
advantage is that they are shown to effectively trade off the
bias/variance of the identification procedure, outperforming
classical Prediction Error Methods (PEM) equipped with
model selection criteria such as Akaike Information Criterion
(AIC) [11]. The separation principle perfectly apply with
these approaches. First, given data and prior information on
the system behaviour, fit a low-bias and minimum variance
model. Then, perform a further approximation via model
reduction. The prior information is used to design the kernel
function employed.

In light of the previous sections, the innovative
contributions of this paper are three-fold: i) we propose
the framework of Gaussian Processes (GP) [2] to first fit a
low-bias model, followed by a N4SID model reduction step,
in order to model the nuclear measurements; ii) we employ
for the first time (as far as the authors are aware) the stable
spline kernel [11] within a real world experimental setting;
iil) we propose a black-box classification scheme that is
taylored to the application and that highlights interpretability
of its predictions.

II. PROBLEM STATEMENT AND EXPERIMENTAL SETUP

The detector considered in this work is the large detector
array CHIMERA (Charge Heavy Ions Mass and Energy
Resolving Array) [1], installed at Laboratori Nazionali del
Sud (Catania, Italy), see Figure 1.

The CHIMERA detector is designed for the study
of heavy ion reactions at intermediate energy (up to
100MeV/nucleon). The multifragmentation phenomenum
(i.e. the focus of this work) is produced by a beam of
accelerated nuclei delivered by a superconducting cyclotron
over a thin target, placed inside a vacuum chamber. When
an accelerated nucleus collides over a target one, the hot and
compressed system formed in the early stage of the collision
can de-excite, leading to the generation of many fragments



Fig. 1: The CHIMERA detector array

with different charge, mass and energy. CHIMERA perceives
the sorrounding phenomena by means of detection cells.
Each detection cell is a telescope composed of a CsI(TI)
scintillation crystal with a thin Si detector in front of it.
When it by a particle, the CsI(Tl) element produces a light
impulse. A photodiode collects the emitted light producing a
current output which is converted into a measurable voltage
signal v(¢) via a charge amplifier. Similarly, the output of
the Si detector (produced by a charge displacement when hit
by a particle) is fed into a preamplifier and a signal u(t) is
generated. The measurement chain is depicted in Figure 2.
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Fig. 2: Measurement chain, representing analog signals
(blue) and digital signals (red)

The signal w(t) is the most informative for the
classification of LCP particles [12], [14]. The produced
impulse measurements can be modeled by an exponetial law
which decay rate depends on two time constants, a “fast” one
(17), and a “slow” one (75) [13]. The voltage signal v(¢) is
sampled at 7y, = 10ns with a 14-bit resolution. For each
pulse, 2048 samples are measured. A set of pulses produced
by known particles (manually labeled with visual methods
[12]) are collected in an experiment where a beam of 20Ne
at 21MeV per nucleon bombards a '2C target. The dataset
employed for this work consists of 8751 pulses, about 20us
long, described in Table 1. A total of 10 different particle
types are considered. Particles with atomic number Z > 5
and with atomic mass number A > 10 are regarded as Heavy
Tons.

The next section describes the following aspect: a) the
observation motivating the modeling of the CsI(Tl) light
impulse as the impulse response of a LTI system; b) the
preprocessing steps performed on the raw measured data; c)
the nonparametric smoothing procedure performed by means
of gaussian processes; d) the subspace system identification
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Fig. 3: Example of a measured v(¢) response (blue). The
baseline value is highlighted with its fitted line (dotted red)

technique employed using the smothened data.

111. MODELING THE IMPULSE RESPONSE
A. Working assumptions

Following the results in [12], we chose to model the signal
v(t), measured from the CsI(TI) detector, as the impulse
response of a Single-Input Single-Output (SISO) LTI system,
with transfer function V'(s). Based on [12] and references
therein, the following dynamic system model is employed:

1 My s
Vi(s) = . 1
(5) L+ 87 <1+s7'f+1+s7'5>’ W

where 7; and 7, denotes the fast and slow time constant of
the light impulse response, respectively, the gains iy and
ps are related to the energy of the particle, and 7,,, models
the dynamic respose of a unitary-gain sensor. Notice how, in
this case, the time constant of the sensor is higher than the
phenomenum that it is measured. Furthermore, we suppose
that the data are affected by a stationary zero-mean additive
noise, such that:

E(kTs) - L(kTe) + 5(kT€)a

E=1,...,2048 (2)

where U(kT}) denotes the noisy impulse response. From now
on, we simplify the notation by dropping the term 7T in (2).

B. Preprocessing steps

A set of preprocessing steps have been performed on raw
data. An example of measured impulse response is shown
in Figure 3. It is possible to observe a ‘“deadzone” prior
to the impulse’s starting. This is due to the post-triggering
acquisition setup and acquisition chain’s offsets. Thus, two
actions are mandatory: i) the baseline removal and ii) the
detection of the impulse starting time. The baseline removal
process is made by fit a line on the first 4us of the
measurement, such that g(k) = m - k + 1, with m,l € R
the line’s coefficients. The fitted line is then removed from
the measurements, obtaining the signal z(k) = v(k) — g(k).

The detection of the starting time required special
treatment, since impulses have different amplitudes and
shapes. The following procedure was devised by the authors:

1) The discrete time derivative of z(k) is computed

dz(k) = (z(k)—z(k—1))/Ts. A first estimate, i.c. k1,



TABLE I: Dataset employed in this work

Isotope Atomic number (Z) Atomic mass number (A) Number of employed pulses
Iy (protons) 1 1 904
2H (deuterons) 1 2 980
3H (tritons) 1 3 992
3He 2 3 989
“He 2 4 991
SLi B 6 989
TLi 3 7 897
"Be 4 7 510
9Be 4 9 524
Heavy ions >5 > 10 979
t ‘‘‘‘‘‘‘ ~<_ . — Root of the polynomial of the stable spline kernel is the most natural choice. This is
O ' . . .
0= ) a particular type of kernel function that has been designed
= Deleted samples in order to model LTI systems. We employed the so called
) 20 | | continous-time second-order stable spline kernel [11]:
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Fig. 4: The rationale for choosing the starting time

of the initial condition is made when dz(k) exceedes
a predefined threshold;

2) A third order polynomial p(t) is fit on the 10 points
after kq;

3) The root r of p(¢) that is nearest to ky is computed.
The nearest sampled point k3 successive to r is taken
as the first non-null impulse sample;

4) The starting point £* is taken as the time instant
before ks, posing z(k*) = 0. Samples before k*
are deleted. We denote the final preprocessed signal
as y(k),k=1,...,N, where N is the length of the
particular measurement (since the baseline length is
different for each acquisition, the cleaned data can have
different lengths).

The procedure is depicted in Figure 4 after that the baseline
was removed. Each impulse now lasts about 16.s. The last
caution was to multiply the data for minus one, in order to
obtain an impulse response of a system with positive gain,
as should be from physics relations.

C. Nonparametric system identification

Adhering to the rationale presented in the introduction, we
chose to use the framework of gaussian processes to model
the time-domain impulse responses. In this way, a low-bias
and flexible model is obtained. The estimated response is the
minimun variance estimate when error measurements and
data are considered as Gaussian random variables. Given
that the data are interpreted as impulse responses, the use

Since, in this scenario, the function that we want to estimate
is an impulse response, the domain of the kernel is the
continuous time. Thus, the regressors are the time instants
of the measurements.

Consider now the vector Y € RV*! formed by stacking
the impulse response’s values y(k). As stated in (2), we can
model the measurements as Y = F + F, where F € RV*!
contains the noiseless data f(k), i.e. the noiseless version
of y(k), and F € RV*! contains the error terms e(k). We
will suppose now that the errors e(k) are independent and
normally distributed with variance 2. The distribution of the
observed values given the noiseless ones is:

p(Y\F> :N(Y\ F, 02~]N), %)

where Iy € RV*N denotes the N-dimensional identity
matrix. From the GP’s definition the marginal distribution
p(F) is given by a Gaussian whose mean is zero and whose
covariance is defined by the kernel matrix & € RV*:

p(F) =N (Fl0, K). 5)

The matrix K (also known as Gram matrix) is a symmetric
semidefinite positive matrix, such that K = k(s,t).
Therefore, instead of placing a prior on the parameters,
we put a prior over the noiseless data F. The marginal
distribution of Y can be found by marginalizing over
F, using known properties of Gaussian distributions (see
Equation (2.115) of [2]), as:

p(Y) = /p(Y\ F)-p(F)dF (6)
—N (Y10, K+ 0* - Iy)
:N(Y| 0, Z,7>.



where n = [X, 3, 07 " & R3*1 contains the hyperparameters
of the method. A prediction on a set of test data Y- € RN7 <1
can be obtained as the expected value of the predictive
distribution p(YT | Y). The predictive distribution can be
computed by applying standard formulas for conditioned
Gaussian distributions (see Equations (2.81) —(2.82) of [2]).
Its expected value is:

Yr=Kp-2Z;'-Y, )

where I € RNTXN s the kernel matrix such that its
(s,t)-element is k(s,t) witht =1,...,N, s=1,..., Nr.

The values of Yy = G, - 5(Np)]T € RVNe*1 are a
noiseless estimate of the true function in correspondence of
the test inputs. Therefore, they can be employed in place of
the raw measurement data for further analysis. The method
provides also the variance of the estimate ¥ € RV7 XNt
at the prediction points. In this work, we only perform
smoothing: the test data are equal to the train data, such
that Y =Y and N = N.

For each impulse response, we performed an
hyperparameters optimization procedure, by employing
the Empirical Bayes method [2]. The technique consists into
maximizing the marginal likelihood of the data (that depends
on 1) given by (6). An estimate of the hyperparameters
values can be obtained as [2]:

n= argnmin YTZ;lY + log det(Z,)). (8)

To efficiently compute (8), we used the computational
trick of Algorithm 2.1 in [13], that employs Cholesky
decomposition of the marginal likelihood covariance matrix
Zy,. The results of the applied procedere is shown in Figure
5, where it can be observed how the method has efficiently
reduced the noise present in the data.

1000

o Observed data
GP Prediction
3000
7 e
3 — _
= 2000 - H
& :;\“\
< \mﬁ
R,
1000 N L
R
0 2 4 6 R 10 12 14 16
Time [ps|

Fig. 5: Example of a measured impulse response (blue)
with superimposed Gaussian Process prediction (green). The
smothing effect is clearly visible

D. Subspace system identification
We now turn our attention to the identification of
the system (1). Consider the state-space representation of
discrete-time SISO LTI system:
x(k+1) = Az(k) + Bu(k) )
y(k) = Cx(k) + Du(k), (10)

where z(k) € R"*!, u(k) € R and y(k) € R are the system
state (of dimension n), input and output, respectively. We set
D = 0 since we preprocessed the impulse data to start from
zero. With the data obtained by the flexible model devised in
the previous section, a minimum-order realization of (9) can
be found by employing the N4SID procedure described in
[8], [12]. The method briefly consists into creating an Hankel
matrix /7 composed by the noisy impulse measurements. The
Singular Value Decomposition (SVD) is then employed to
suitably reduce the rank of H to the chosen model order.
With the reduced Hankel matrix, it is possible to obtain
an estimate of the Observability and Reachability matrices
of the system, from which an estimate {E,E,é} can be
computed.

Instead of creating the matrix I with the noisy data
v(k), the idea is to use the smoothened ones y(k), and
apply the N4SID procedure. This approach permits to
avoid optimization procedures that can get stuck in local
minima, i.e. estimating the parameters of a predefined
transfer function. As further check, the inspection of the
SVD singular values showed that the order of the system
A, B,C} are
available, an estimate of the unkown parameters of (1),
ie. {s, s, 7y, Ts, T} can be computed by converting the
discrete system into a continous one. It should be noticed
that this conversion can produce a couple of complex poles,
that do not adhere with the modeling of (1). Those tests
were discarded, resulting in the dataset of Table I. We leave
to future research the case where N4SID results are used as
initial condition for an optimization procedure.

The results of the N4SID procedure are perfectly in line
with those obtained in [12]. Boxplots of the estimates are
shown in Figures 6-9.
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IV. PARTICLES CLASSIFICATION

A particle type is completely defined by its charge,
given by its atomic number Z, and its mass, given by
its atomic mass number A. In the previous sections, we
applied a system identification point of view to characterize
each impulse response of light charged particles (Z < 4,
A < 9). Following the separation principle, we first fit a
low-bias model with gaussian process regression. Then, a
model reduction has been performed. Each measurement
is now condensed in an estimate of the parameters
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were then rounded to the nearest integer value. The test set
consisted in 100 samples from each type of particle. s The
prediction of the NN model are then fed to a second classifier.
A decision tree [3] is employed to predict the type of each
particle. The inputs are the estimated values of A and Z,
while the output is a integer number that represents the class
of each observation. The complete classification procedure
is reported in Figure 10. We could have employed just
one classifier, mapping the features’ vectors directly to the
particle classes. However, the proposed chain of classifiers is
not only taylored to the classification of different parciles, but
it is also highly interpretable because they can be clustered
according to the predicted atomic number Z and atomic mass
number A, as will be show in the next section.
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Fig. 9: Gain of the slow component

{5, 77,75, 8}. We can now represent each impulse
response as a feature vector ¢ = [y, s, 75, s, 8] € RO¥L,
A feedforward neural network (NN) [2] is trained to predict,
for each observation, its atomic number Z and atomic
mass number A. The choice of using a NN model relies
of the fact that it can efficiently handle multi-dimensional
outputs as in this case. In fact, it is crucial to take into
account label correlations during the classification process
[4]. The NN is composed by 2 hidden layers with 10
neurons each, and a final layer with 2 outputs. The hidden
layers have an hyperbolic tangent activation function. The
NN structure has been chosen by cross validation. The
output layer has a linear activation function. The labeled
outputs consist in the couple @ = [4, Z]T € R?*, The
training data were standardized to zero mean on unitary
variance. The same transformation, with mean and variance
computed on the training set, is applied to the test data.
The training of the NN has been performed using the well
documented Levenberg-Marquardt minimization algorithm
[6]. The NN predicts a vector ¢ = [q1, 2] € R?*! which
is the real-valued prediction of A and 7. The prediction

Fig. 10: Schematic of the classification procedure

V. RESULTS AND DISCUSSION

Several observations can be made from the results of
Figures 6-9. The mean value of fast time constant 77 and
of the slow one 75 decreases (tendentially) with the atomic
number Z. The standard deviation also decreases. The gains
py and p, tend to increase with Z and A, apart for the
heavy ions (HI) and the *He particles. The hyperparameter
B increses with Z. This is in line with the behaviour of 7
and 7,. Infact, lower time constants indicate a higher decay
rate. This is the exact information that 3 encodes. These
estimates are in line with the literature [12].

The classification results of the proposed approach are
compared with the method proposed in [12]. Here, the
author directly performed the N4SID step on noisy impulse
data v(k) (after data preprocessing). Notice how the task
is quite challenging: infact, previous results obtained very
high classification rates. In this work, we reimplemented
the method proposed in [12] to make the comparison. The
purpose is to test the effectiveness of the proposed two-step
identification procedure. The classification accuracies are
reported in Figure 11 and Figure 12. The heatmaps represent
the percentage of corrected classifications, comparing the
predicted particle types with the known ones. Darker
colors indicate an higher -classification accuracy. The
proposed approach obtained a classification accuracy of
96%. The method in [12] correctly classified the 93%
of the test particles. It is important to emphasize how a
3% improvement in classification accuracy is a significant
contribution for this problem, since this is important to
determine the properties of investigated physical phenomena.
Figure 13 plots a subset of the test samples along with the
classification bounds discovered by the decision tree. Notice
how the learned bounds are very intuitive and could be set
by human visual inspection.
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VI. CONCLUSIONS

In this paper, we investigated the use of the gaussian
process framework to identify a low-bias dynamic model.

The flexibility of GP permits to capture the dynamics that
are required for a specific application. If a low-order model
is needed, model reduction can be employed as subsequent
step. This rationale has been applied to the classification
of light charged particles. The parameters of the identified
system are fed to a combination of classifiers to predict
the particle type. The classification procedure is a black-box
model that is, however, highly interpretable. Results showed
how the combination of nonparametric and parametric
modeling improved the classification accuracy of the
previous method, that did not leveraged the nonparametric
modeling step. Further research is devoted to a better
investigation of the sensor’s model, comparison with other
model reduction techniques and the design of an ad-hoc
kernel.
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