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Semi-supervised learning of dynamical systems: a preliminary study
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Abstract— System identification has, in recent years, drawn In general, in regression problems like system

insightful inspirations from techniques and concepts of the
statistical learning research area. Examples of this consist in the
widely adoption of regularization and kernels methods, in order
to better condition the identification problem. By pursuing the
same purpose, we introduce the concept of semi-supervised
learning to tackle the system identification challenge. The
problem, casted into the framework of the Reproducing Kernel
Hilbert Spaces, leads to a new regularization technique, called
manifold regularization. An application to the identification of a
NFIR model is carried out, and a comparison with the standard
Tikhonov regularization technique is shown.

I. INTRODUCTION

The majority of the recent breakthroughs in system
identification have their foundations built upon statistical
learning methods. Whether the innovative approaches are
built upon kernel methods [1], leverage the potential of
Sequential Monte Carlo (SMC) filtering [2], or are casted
into a Bayesian framework [3], they all share, as a
common denominator, their statistical roots. In particular,
kernel methods have found the interest not only in the
aforementioned time-domain approaches but, recently, also
of the frequency domain system identification community
[4]. This motivates further research on these non-parametric
approaches.

With the same spirit of the previous works, one may
wonder what statistical learning still has to offer to the
system identification cause. Broadly speaking, statistical
learning deals with four types of problems: Reinforcement
learning [5], Supervised learning [6], Unsupervised learning
[6] and Semi-supervised learning [7]. In the latter class
of problems, both supervised and unsupervised data are
supposed to be available. Such a scenario may occur when
performing a measurement is costly or it is a destructive
experiment [8]. A variety of techniques have been developed
to make use of the additional (unsupervised) data, to
represent a function that (statically) maps inputs to outputs,
both in classification [8] and regression [9] problems.

When moving to dynamical system identification, we
can legitimately wonder if and how the presence of inputs
with no corresponding outputs (i.e. unsupervised data) can
be useful to the system identification purpose. This would
translate the system identification problem from supervised
to semi-supervised, opening for the inclusion of related
techniques.
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identification ones the aim is to learn the function
that generates the supervised data. These are data that are
at our disposal, and are such that both inputs and outputs
are known. When, in addition to the supervised data, other
inputs are available (but without the corresponding output),
their disposition in the regressor space gives additional
information about how the unknown outputs could be.

An algorithm to exploit such additional information has
been presented in [9]: however, the described method is a
transductive learning one. This means that its purpose is
to correcly predict only specific test data. This is in contrast
with the inductive learning reasoning, that tries to generalize
from specific training examples to general rules (which are
then applied to specific test cases).

The method presented in this paper, named
Semi-supervised System Identification (SSI), gives a
solution for the inductive semi-supervised learning problem,
by leveraging on the framework of the Reproducing kernel
Hilbert Spaces (RKHS) [10]. The aim is to identify the
unknown true system S given a set of input-output data
(supervised dataset), leveraging also on the information
contained in a set of input-only measurements (unsupervised
dataset). The prior information embedded in the distribution
of the unsupervised dataset are employed in the form
of an additional regularization term, called manifold
regularization. Classical Tikhonov regularization impacts
the global smoothness of the learned function, while we
will show that the manifold regularization term implies,
instead, the concept of local smoothness.

Since, in dynamic systems, the regressors may also contain
the past output samples (not available in correspondence of
the unlabeled input points), we will restrict our analysis to the
case of Nonlinear Finite Impulse Response (NFIR) systems,
leaving this extension to future research. We should here
acknowledge that the application of a manifold regularization
term in (inductive) static fuction learning has already been
faced in [11], [12]. We built on these results, first by
applying the methodology to the system identification case
and, afterwards, by introducing a new method for generating
the unsupervised input data (without the need to perform an
additional experiment).

II. PROBLEM STATEMENT

Let the NFIR Single-Input Single-Output (SISO) model
be defined as:

S:yt+1)=g(p@®)+elt), (1



where y (t) € R denotes the system output, g is a nonlinear
function, ¢ () € R™*! is the regression vector such that
o) = [u(t). -, ut—m+1)]", and e(t) € R is an
additive white noise. From now on, m will be referred
to as the model order. The objective of this work is to
identify a system of type (1), assuming that m is known'. We
suppose furthermore that two different datasets are available:
a supervised data set Dg and an unsupervised one Dy;. The
supervised dataset is such that:

Ds = {(U'S (t) 7y(t))

where ug(t) is the input at time ¢, y(¢) is the output
associated with the input ug(t), and Ng is the number of
supervised data. The unsupervised dataset Dy is defined as:

Dy = {(uv (t)) |

where uy(t) is an input for which the associated output
has not been measured, and Ny is the number of these
unsupervised input measurements. Notice that the dataset Dg
contains both input and output samples, while the dataset
Dy consists of only input measurements. In order to obtain
a more compact representation, it is useful to represent the
observations and the regressors in matrix form. By using
the supervised dataset Dg, we obtain the output vector
Y € RVX1L:

Y=[y(m+1)

| 1<t< Ns}, (@)

1<t< Ny}, 3)

y(Ns) 17, )

which contains the observations y(t) stacked in row, and
N = Ng — m is the number of outputs that it is possible to
employ for the identification stage, given the model order m.
In the same way, it is possible to construct the N supervised
model’s regressors, for m <t < Ng — 1, as:

os (t) = [ us(t)

where ¢g(t) € R™*!. The regressors’ matrix ¢ € RV*m™
can be defined by stacking all supervised regressors @g (1),
leading to:

=] ps(m) ps (Ns —1) ]T- (6)

Remember now that, in addition to the supervised dataset
Dg, we have at our disposal also the unsupervised dataset
Dy, containing only input samples. It is therefore possible
to construct the model’s regressors as in (5), by leveraging
on Dy . There are therefore N,.;; = Ny — m + 1 available
unsupervised model’s regressors, each one of them defined,
form <t < Ng —1, as:

pu (t) = [ v (t)

where o7 (1) € R™*L It is then possible to group all of these
unsupervised regressors into an (unsupervised) regressors’
matrix € RV-UXm aq:

us(t—m+1) 1" 5

uw (t—m+1) 1" @)

By = [ v (m) ov (Vp) 17, ®)

The knowledge of m is generally not available and an estimate is usually
derived from the data. Since the issue is not trivial, this is postponed to future
research.

Combining the input datasets, we can define the joint
matrix, containing both supervised (5) and unsupervised (7)
regressors, as: .

o= &} |, ©)

where & € RN+*m and N, = N 4+ N,y is the total number
of regressors, both supervised and unsupervised. From now
on, for simplicity, the ¢-th row of @ and Y will be denoted
as o (i) and y (4), respectively.

The aim now is to identify the system S by employing the
information contained in Dg and Dy .

ITI. MANIFOLD REGULARIZATION

When can Dy; be of some use into discovering the relation
between inputs and outputs? This is the case if the marginal
probability density p(p) which, we suppose, generates the
inputs, happens to be informative about the conditional
distribution p(y|y), describing the possible outputs values
in correspondence of the input regressor ¢ [12]. We can
make this possible by stating a specific assumption about
the connection between the marginal and the conditional
distributions [8]:

Assumption 1: Semi-supervised smoothness
If two regressors ¢ (i) and ¢ (j) in a high-density region are
close, then so should be their corresponding outputs y (i) and
y (4)-

Assumption 1, therefore, constrains the solution to
be smooth with respect to the manifold onto which
the regressors lie. This can be enforced by a proper
regularization term, that should reflect the intrinsic structure
of p(y). This term has a different taste with respect to
the standard Tikhonov one, that instead, enforces a global
smooth behaviour to the unknown function. One of the first
attempts to formalize Assumption 1 has been taken in [13].
Here, we take the opposite path: our aim is to define a
regularization term which, in turn, enforces Assumption 1,
without a specific set of choices and ad-hoc definitions. In
this view, a possible choice for the manifold regularization
term has been advocated in [12] as:

S,= [Iv9I*-p (o) d (10)
where G C R™*! is the regressor space and p(y) denotes the
probability density function of the regressors defined over G.
The main idea behind the manifold regularization rationale
considered here is that, if Assumption 1 holds, the gradient
of g, and so S;, must be small. Then, minimizing S, with
respect to model parameters or missing outputs values is a
way to enforce Assumption 1.

In the standard supervised learning approach, the
information about the input distribution p(¢) is rarely used.
This is the case because, most of the times, p(¢) is unknown
and the smoothness index S, cannot be computed exactly.
It turns out that S, can be approximated using the regressor
graph [11], [12]. This is a weighted complete graph with the

(supervised and unsupervised) regressors as its vertexes, and
. _lle@®—e@]?
the weight of each edge defined as w; ; = € 20,2 ,



where o, € R is a tuning parameter. Now, let’s consider
the Laplacian matrix L = D — W, where D € RN~>xNr
is the diagonal matrix with elements D;; = Zjvz’l wj j, and
W € RN~*Nr ig the matrix composed by the weights w; ;. A
higher value of w; ; indicates that two regressors are similar.
This rationale derives from a manifold learning algorithm

called Laplacian Eigenmaps [14]. It can be shown that [12]:
S,~YT.L.Y, (11)

~ T
where Y = {g((p(l)),-n ,g((p(Nr))] € RN~*1 contains
the noiseless outputs, corresponding to both supervised
and unsupervised input regressors®. In order to obtain the
approximation of S, (11), only the input regressors are
needed. Thus, both supervised and unsupervised regressors
can be employed for this purpose. Notice that Y differs from
Y, since the former is a noisy vector of N observations, while
the latter is a noiseless vector of N, observations.

IV. THE SEMI-SUPERVISED APPROACH

In this work, we will consider the realistic case where
g is unknown and therefore no prior parameterization is
available. A powerful tool for dealing with such challenges
is the framework of the RKHS. Therefore, a kernel-based
nonparametric approach, based on RKHS, is proposed. The
method embodies the notion of manifold regularization, in
order to take advantage of the presence of unsupervised data.

Suppose now that g belongs to a RKHS H defined using
the kernel K. The tipical variational formulation consists into
finding the best function § according to the criterion [16]:

g—argmmZ(

9EH 21

2 2
e(0)) +A- gk (12

where ||g||3, is the Tikhonov regularization term and A € R
controls the regularization strength. The solution to (12) is
given by the representer theorem [17]:

N N
ilp) = esK (e (1) =) carp(n (e (1),
s=1 s=1
(13)
for some N-tuple ¢ = [c1,ca,...,cn]7 € RV*1 The

functions 7, (-) are called representers of the point o (s).

In order to include information about the local smoothness
of the function (leveraging on the unsupervised data points),
it is meaningful to add the manifold regularization term (11)
to (12), leading to [12]:

= arg min Z <

2 ~
9(e (1)) +Algl3+ A T TLY,
geEH 3
(14

where \j; € R has the same role as .
It is possible to show that the representer theorem still

holds for the cost function (14), and the solution is given by

2It is interesting to observe that the same problem structure (11) is shared
by other manifold learning methods, although they do not use L, but a
different symmetric matrix [15].

considering all N, regressors, both the IV supervised and the
N,y unsupervised ones [12]:

N, N,.
s=1 s=1 (15)
for some N,.-tuple ¢ = [¢1, Ca, . . . ,5NT]T € RN»x1,

In order to proper evaluate the effect of the new introduced
regularization term (11), we will suppose from now on that
the Tikhonov term in the cost function (14) is set to zero,
leading to the following purely semi-supervised formulation:

N
g = arg min Z (y (t)—g((p (t) ))Q—I—)\M.?T.L.f/. (16)

The vector Y introduced in (11) can the be rewritten as:
Y = K@, (17)

where K € RY~*Nr is a semidefinite positive and symmetric
matrix (also called Gram matrix or kernel matrix) such that
Kij = K (@), 0(5)).

Now, by using results (15) and (17) it is possible to write
the minimization problem (16) in such a way that it depends
only on the unknown vector & € RNV->1:

2
Y ~_
[ On. ] —P-Ke

+Am T -K-L-K-¢,

2
(18)
where Oy,,, € RN>X1 is column vector of all zeros. The
matrix P € RN+ permits to select only the elements of
KC that contribute to explain the N supervised data points,

such that: s 0
_ N
[ 0].

¢ = arg min
ceRNr

19)

Since (18) is now quadratic in ¢, its minimization can be
carried out analytically. The minimizer of (18), therefore, can
be found by solving the linear system:

Y
ONTU -

The unsupervised points contribute to the overall estimated
function via the matrix .

It is now interesting to show a comparison between
searching the unknown function following formulation (14)
or (16). Consider a static unknown function ¢(x) that
presents a discontinuity point at z = 0. The Tikhonov term
enforces a global smooth behaviour, while the manifold term

strives for local smoothness. The employed kernel is the

le ()12
Gaussian kernel K (¢(t),(s)) = e 7557 where o

regulates the Gaussian dispersion. Figure 1 shows the results
of a regularization network that employs only the Tikhonov
regularization for different values of A and o. In this case,
the unsupervised points are of no use, and therefore are not
depicted. When A = 0, also the Tikhonov term is absent, and
the estimated function interpolates each one of the supervised
points. Choosing a low value of o, we are defining a function
space that admits also non-smooth functions [18]. Because

[P K+ My -L- /c] (20)



of this, the learned function is composed by a series of
sharply peaked Gaussians, centered at the observed points.
This is in line with the definition given by the representer
theorem, given that, in the case of a Gaussian kernel, the
representers are still Gaussian functions. As o grows, the
estimated function gets smoother, fitting worse and worse
the high variation regions of the true underlying function.
The effect of the regularization hyperparameter A is that
of weighting the regularization and the error cost function.
With high values of ), the estimated function tends to the
zero one: this is in line with the parametric approach, where
a high A\ value makes all parameters’ estimates null. In
all of these cases, given the global nature of the imposed
regularization, the estimated function fails to approximate
well the discountinuity region.
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Fig. 1: Example of hyperparameters’ sensitivity when employing
only the Tikhonov regularization term. The plots depict the true
unknown function (solid green line), the supervised data (red dots),
and the estimated function (dotted black line)

The function’s estimation example using only the manifold
regularization term is depicted in Figure 2. Here, we suppose
that unsupervised points are available in a neighbourhood of
the discontinuity point. The method should not regularize in
this region, in order to allow non-smooth (rapid) variation
of the estimated function, and should enforce, instead,
smoothness elsewhere. By choosing an appropriate low
value of o, it is possible to fit the function even in the
discountinuity region, being not sensible to the variation of
Anr. High values of o makes the estimate smoother, just
like as A controlling the Tikhonov regularization. Increasing
Aps make the function as smooth as possible: in this case,
this means that the manifold regularization term is weighted
much. This, in turns, translates into making each domain
point similar to the other, and the estimated function reduces
to the mean of the supervised points.

V. UNSUPERVISED INPUTS SELECTION

In real-world identification of dynamic systems, contrary
to the standard semi-supervised problems encountered in
statistical learning, the unsupervised data set Dy may not
be a problem input as in Figure 2, but, instead, a design
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Fig. 2: Example of hyperparameters’ sensitivity when employing
only the manifold regularization term. The plots depict the true
unknown function (solid green line), the supervised data (red dots),
the unsupervised data (blue dots), and the estimated function (dotted
black line). The hyperparameter o, is fixed to 0.01

parameter. In some cases, Dy may contain some input time
series which are likely to excite the system dynamics in
future operating conditions (when the model will be used).
More often, since this additional data set affects the model
quality, Dy could be chosen to enforce Assumption 1 to
be true. Notice that to obtain such an additional data set,
it is not required to run a new experiment on the plant.
Following Figure 2, if the discontinuity region would be
known, a possible unsupervised points generation method
could be to generate the additional inputs as in the example.
If the discontinuity region is not known, then, a more general
method has to be devised for the generation of Dy;.

Before discussing the choice of Dy, notice that
Assumption 1 requires only that, inside the same high density
region, the regressors have a similar corresponding output,
namely that their difference is “small”. For this reason, the
proposed method will generate the unsupervised regressors in
the neighborhood of the supervised ones, where, if the system
is smooth enough, they should have a similar corresponding
output. This approach will generate a regressors set similar to
the one shown in Figure 3, where it is possible to notice the
presence of Ng regions, containing a supervised regressor
and some unsupervised ones. The algorithm used to select
Dy is indicated next. Let Dy be composed of p unsupervised
datasets D};, i = 1,...,p as:

v="{(uw®)
where uf; (t) = ug (t) + vi(t), v*(t) is a random variable
and p is a tuning knob of the method. Each one of the p
new (unsupervised) datasets contain therefore exactly Ng
unsupervised input regressors, see Figure 3.
The value of v'(t) determines the distance of the p
unsupervised points with respect to the supervised one
(proportional to the area of the regressors’ regions):

therefore, it has to be small enough to guarantee that
the system output does not vary significantly inside these

| 1<t<Ng} (21)
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Fig. 3: An example of unsupervised regressors’ selection, for a
system with m = 2 using p = 10. The plot represents the
supervised regressors (red crosses) and the unsupervised regressors
(blue circles)

regions. The choice of v*(t) will be discussed later.

From such p datasets, it is possible to determine the
quantities defined in Section II. Since the unsupervised points
are generated in correspondence of the supervised ones, we
have N employable unsupervised regressors for each one
of the p datasets. This leads to a total of N,y = p- N
unsupervised regressors ¢, (t) € R™*1 ¢ = 1,....p.
Each one of them is such that, according to (7), for
m<t<Ng-—1:

pu (1) = [ up (1)
From the unsupervised regressors computed in (22) using

the ¢-th dataset, it is possible to form the i-th unsupervised
regressors’ matrix ¢, € RN *™ a9 in (8):

i P - T

v =1 ¢u(m) ¢t (Ns—1) ] .
The complete  (unsupervised) regressors’  matrix
&y € RNUXm  can there be therefore composed by
stacking the matrices (23), ¢ =1,...,p:

1T
()" |

A reasonable criterion for the selection of the random
variable v’(t) is to consider that the regions should not
mix with each other, since this would lead to non-smooth
functions (e.g., with jumps in certain points). It is then
useful to introduce a tuning parameter « € R, allowing to
regulate the regions’ maximum area, and that highlights if
the regions mix or not. In particular, in the method indicated
next, « = 1 corresponds to the threshold between mixed
regions (achieved using a < 1) and completely distinct
regions (a > 1). In order to use «, it is necessary to define
a distribution of v*(t) that depends on « and guarantees
the aforementioned properties. A possible way is to use a
uniform distribution:

v'(t) ~ U (=h,h)

uy (t—m+1) 1" (@)

(23)

ov = (#1)" (24)

1<t<Nsg, i=1....,p (25

where h > 0 determines the area of the unsupervised points
regions. To impose distinct regions, the following inequalities
must hold:

m<t<Ng—1, i=1,...,p

(26)
where d is the distance between the two closest supervised
regressors. After some computations, it can be shown that
(26) can be written as:

It () o5 (@] < &

m 2
Z(Ui(t—j+1))2 < (Z) m<t<Ng—1, (27)
j=1
Since |v’ (t — j +1)| < h (it is generated from the random
variable (25)), the inequalities (27) hold if "/ | h? < (g)z.
Recalling that A > 0, this corresponds to impose that
h < ﬁ. This condition imposes a constraint for h to
maintain Ng distinct regions. To make such a constraint more

or less conservative, it is possible to use «, for examples, as

follows:
d

h =
2a/m

VI. RESULTS AND DISCUSSION

(28)

In this section, a numerical example is provided to
show the effectiveness of the Semi-Supervised Identification
algorithm, presented in the previous sections, that employs
the manifold regularization term as in (16). The approach
is compared with the standard formulation (12), where only
the Tikhonov regularization is considered. We employed the
Gaussian kernel to estimate the second order (m = 2) NFIR
system:

y (1) =1.432 - u (£)® + +1.034 - u (t — 1)* 1.564 - u (t — 1)* +
+3.234-u(t)u(t—1)+2.145 u (t)® +
+3.432-u(t)®u(t —1)+2.745 - u () u(t —1)°.

(29)
The supervised dataset Dg generated from (29) is composed
by very few points, namely Ng = 15 measures, corrupted by
a Gaussian white noise input of zero mean, unitary variance
and signal to noise ratio of 15dB. The problem is then
badly conditioned and is well suited for testing the proposed
methodology. The unsupervised input dataset Dy has been
generated according to Section V.

The hyperparameters of the Tikhonov regression method
(12) are the regularization coefficient A (chosen from
100 evenly spaced values in [0,107%]) and the shape
parameter of the Gaussian kernel o (chosen from the
values [3,6,10,11]). The hyperparameters of the manifold
regression method (16) are instead not only the regularization
coefficient Aps (chosen from 100 evenly spaced values
in [107%,107']) and o, but also the shape parameter
of the Laplacian Eigenmaps o. (chosen from the values
[0.1,1,10,100]), the parameter controlling the area of the
generated unsupervised points « (chosen from 100 evenly
spaced values in [1,17]) and the number of additional
unsupervised datasets p (chosen from the values [2, 3, 4]).

In order to tune the respective hyperparameters of the



methods, an additional supervised dataset Dy of Ny = 1000
points has been generated in the same way as Dg. For
obvious reasons, Dy should not be available. This problem
is postponed to future research.

In order to assess the overall performance of the estimation
methods, a supervised testing dataset Dy of Np = 10000
points is employed, generated analogously to Dg. Using
Dr it is possible to evaluate the NRMSE (Normalized
Root-Mean Square Error) fitness metric:

-]

Fit=100- [1— L I}
1Yr —gp - 1|

(30)

where Y is the vector of the estimated test outputs using the
test inputs, Y7 is the true test outputs vector, ¥, is the mean
of Y7 and 1 denotes a vector of ones of suitable dimension.

In particular, a Montecarlo test using Nj; = 100 sets of
measures (with different random initializations) is proposed,
to show the statistical significance of the method. The
notched boxplots in Figure 4 depicts that SSI significantly
outperform the Tikhonov regularization method, showing a
significant difference in the medians. The SSI method, in
addition, exhibits a lower estimation variance.
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Fig. 4: Comparison between Tikhonov regression and

semi-supervised identification in terms of the NRMSE measure of
fitness. The boxplots represent a total of 100 different simulation
and estimation trials

Given the numerical result, the belief is that they clearly
show the potential of the semi-supervised approach for
nonlinear system identification with respect to state of the art
techniques. The price to pay is the fact that, e.g., compared to
Tikhonov regression, three additional knobs need to be tuned,
namely o., a, p. However, notice that they are characterized
by a clear physical interpretation: o, controls how much
far two points can be considered similar or “connected”
(if 0, — oo the result is an adiacency graph); p (that is,
N,y /N) indicates the relevance of the prior smoothness
assumption over the measured data, while o represents a
degree of smoothness. Therefore, they can be reasonably

tuned with some (mild) prior information on the system
dynamics. Moreover, simulations showed that, at least for
the considered example, the performance are not sensitive to
a fine tuning of such parameters.

VII. CONCLUSIONS AND FUTURE DEVELOPMENTS

In this work, a semi-supervised learning approach suited
to nonlinear dynamical system identification has been
developed. The method applies to NFIR models and turns
out to be equivalent to a weighted regularization network.
The different smothness behaviours induced on the learned
function by Tikhonov and the manifold regularization term
have been pointed out. The approach has been shown
to outperform the statistical performance of Tikhonov
regularization, when the additional unsupervised dataset is
selected as indicated by the method.

Future research work will be dedicated to the extension
of the semi-supervised paradigm to auto-regressive models
and to a comparison with more complex regularization
techniques. Another challenging open problem concerns the
estimation of the hyperparameters.
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